恒星结构和演化-学习记录3-第三章-物态方程2

第三章:物态方程(2)

多方球与白矮星

压强随距球心距离的变化

  多方球:物态变化是一个多方过程

  白矮星随着时间的演化,温度会变得比较低,密度会变得非常高。中间没有能源,因此白矮星的情形相对简单

  物态为电子简并,因此压强(电子简并压)几乎与温度没有关系: P ∼ P e ( ρ ) P\sim P_e(\rho) PPe(ρ),而费米能与密度有关

  在非相对论性的情况下:
P e = 1 20 ( 3 π ) 2 3 ( h m e c ) 2 ( 1 μ e m A ) 5 3 m e c 2 ρ 5 3 x F = ( ρ 9.7 × 1 0 5 μ e   g   c m − 3 ) 1 3 ≪ 1 P_e=\frac{1}{20}\left(\frac{3}{\pi}\right)^\frac{2}{3}\left(\frac{h}{m_e c}\right)^2\left(\frac{1}{\mu_e m_A}\right)^\frac{5}{3}m_e c^2 \rho^\frac{5}{3}\\ x_F=\left(\frac{\rho}{9.7\times 10^5 \mu_e\ g\ cm^{-3}}\right)^\frac{1}{3}\ll 1 Pe=201(π3)32(mech)2(μemA1)35mec2ρ35xF=(9.7×105μe g cm3ρ)311
  在相对论性的情况下:
P e = 1 8 ( 3 π ) 1 3 ( h m e c ) ( 1 μ e m A ) 4 3 m e c 2 ρ 4 3 x F ≫ 1 P_e=\frac{1}{8}\left(\frac{3}{\pi}\right)^\frac{1}{3}\left(\frac{h}{m_e c}\right)\left(\frac{1}{\mu_e m_A}\right)^\frac{4}{3}m_e c^2\rho^\frac{4}{3}\\ x_F \gg 1 Pe=81(π3)31(mech)(μemA1)34mec2ρ34xF1
  再次注意到压强只和密度有关

  因为离子的压强比电子的压强要低得多,所以只考虑电子压强(因为在简并的情况下,费米能比热动能大得多)

  可以将上述的压强表达式写为 P = K γ ρ γ = K n ρ 1 + 1 n P=K_\gamma\rho^\gamma=K_n\rho^{1+\frac{1}{n}} P=Kγργ=Knρ1+n1形式,其中, n = 1 γ − 1 n=\dfrac{1}{\gamma -1} n=γ11称为多方指数,由此,可以由上述的表达式得知 K n K_n Kn系数的值:
K 5 3 = 1.0036 × 1 0 13 μ e − 5 / 3 ( c g s ) K 4 3 = 1.2435 × 1 0 15 μ e − 4 / 3 ( c g s ) K_\frac{5}{3}=1.0036\times 10^{13}\mu_e^{-5/3}(cgs)\\ K_\frac{4}{3}=1.2435\times 10^{15}\mu_e^{-4/3}(cgs) K35=1.0036×1013μe5/3(cgs)K34=1.2435×1015μe4/3(cgs)
  现在考虑稳态球对称的前两个方程:
d P d r = − G m r 2 ρ d m d r = 4 π r 2 ρ \frac{dP}{dr}=-\frac{Gm}{r^2}\rho\\ \frac{dm}{dr}=4\pi r^2\rho drdP=r2Gmρdrdm=4πr2ρ
  结合后得到:
1 r 2 d d r ( r 2 ρ d P d r ) = − 4 π G ρ \frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right)=-4\pi G\rho r21drd(ρr2drdP)=4πGρ
  将 P = K n ρ 1 + 1 n P=K_n\rho^{1+\frac{1}{n}} P=Knρ1+n1代入到上式中,即可得到一个关于 ρ \rho ρ的微分方程

微分方程求解

  现在求解这个微分方程。首先,将 ρ \rho ρ写作 ρ ≡ ρ c θ n \rho\equiv\rho_c\theta^n ρρcθn。其中 ρ c \rho_c ρc为中心密度, θ \theta θ r r r的函数,无量纲。由此, P = K ρ 1 + 1 n = K ρ c 1 + 1 n θ 1 + n P=K\rho^{1+\frac{1}{n}}=K\rho_c^{1+\frac{1}{n}}\theta^{1+n} P=Kρ1+n1=Kρc1+n1θ1+n

  将这个形式的 P P P,代入到微分方程中,得到:
[ ( n + 1 ) K ρ c 1 n − 1 4 π G ] 1 r 2 d d r ( r 2 d θ d r ) = − θ n \left[\frac{(n+1)K\rho_c^{\frac{1}{n}-1}}{4\pi G}\right]\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\theta}{dr}\right)=-\theta^n [4πG(n+1)Kρcn11]r21drd(r2drdθ)=θn
  由于 [ ( n + 1 ) K ρ c 1 n − 1 4 π G ] \left[\dfrac{(n+1)K\rho_c^{\frac{1}{n}-1}}{4\pi G}\right] [4πG(n+1)Kρcn11]的量纲为长度的平方,因此,可以记 r n = [ ( n + 1 ) K ρ c 1 n − 1 4 π G ] 1 / 2 r_n=\left[\dfrac{(n+1)K\rho_c^{\frac{1}{n}-1}}{4\pi G}\right]^{1/2} rn=[4πG(n+1)Kρcn11]1/2 r = ξ r n r=\xi r_n r=ξrn,方程最后写为:

1 ξ 2 d d ξ ( ξ 2 d θ d ξ ) = − θ n \frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2\frac{d\theta}{d\xi}\right)=-\theta^n ξ21dξd(ξ2dξdθ)=θn
  称作Lane-Rmden方程

  对于二阶常微分方程,需要两个边界条件。在这里的条件为,在中心 ξ = 0 \xi=0 ξ=0处:
ρ = ρ c ,   θ ( 0 ) = 1 d P d r = 0 ,   θ ′ ( 0 ) = 0 \rho=\rho_c,\ \theta(0)=1\\ \frac{dP}{dr}=0,\ \theta'(0)=0 ρ=ρc, θ(0)=1drdP=0, θ(0)=0
  对方程从里向外积分,积到 θ ( ξ 1 ) = 0 \theta(\xi_1)=0 θ(ξ1)=0处,就积到了表面

  当 n = 0 , 1 , 5 n=0,1,5 n=0,1,5时,积分可以得到解析解:
θ 0 ( ξ ) = 1 − ξ 2 6 θ 1 ( ξ ) = sin ⁡ ξ ξ θ 5 ( ξ ) = [ 1 + ξ 2 3 ] − 1 2 \theta_0(\xi)=1-\frac{\xi^2}{6}\\ \theta_1(\xi)=\frac{\sin\xi}{\xi}\\ \theta_5(\xi)=\left[1+\frac{\xi^2}{3}\right]^{-\frac{1}{2}} θ0(ξ)=16ξ2θ1(ξ)=ξsinξθ5(ξ)=[1+3ξ2]21
  而对于其它的 n n n值,只能求数值解。对于相同半径的恒星, n n n值越大,质量越聚集在中心(注意归一化)

θ \theta θ的物理意义

  将基本方程 d P ( r ) d r = − ρ d Φ d r \dfrac{dP(r)}{dr}=-\rho\dfrac{d\Phi}{dr} drdP(r)=ρdrdΦ写成 d Φ d r = − 1 ρ d P ( r ) d r \dfrac{d\Phi}{dr}=-\dfrac{1}{\rho}\dfrac{dP(r)}{dr} drdΦ=ρ1drdP(r)

  代入 P = K ρ 1 + 1 n P=K\rho^{1+\frac{1}{n}} P=Kρ1+n1,得到:
d Φ d r = − K n + 1 n ρ 1 n − 1 d ρ d r = − ( n + 1 ) K d ρ 1 n d r \frac{d\Phi}{dr}=-K\frac{n+1}{n}\rho^{\frac{1}{n}-1}\frac{d\rho}{dr}=-(n+1)K\frac{d\rho^\frac{1}{n}}{dr} drdΦ=Knn+1ρn11drdρ=(n+1)Kdrdρn1
  进一步得到:
Φ = − ( n + 1 ) K ρ 1 n + C = − ( n + 1 ) K ρ c 1 n θ + C = Φ c θ \Phi=-(n+1)K\rho^\frac{1}{n}+C=-(n+1)K\rho_c^\frac{1}{n}\theta+C=\Phi_c\theta Φ=(n+1)Kρn1+C=(n+1)Kρcn1θ+C=Φcθ
  积分常数 C C C取0,即表面引力势取零,得到关系:
θ = Φ Φ c ,   P ρ = − Φ n + 1 \theta=\frac{\Phi}{\Phi_c},\ \frac{P}{\rho}=-\frac{\Phi}{n+1} θ=ΦcΦ, ρP=n+1Φ
  由此得知 θ \theta θ的物理意义

其他物理量

  在得到多方球的解后,可以分别求出物理量 M ( r ) M \dfrac{M(r)}{M} MM(r) ρ ( r ) ρ c \dfrac{\rho(r)}{\rho_c} ρcρ(r) P ( r ) P c \dfrac{P(r)}{P_c} PcP(r) g ( r ) g ( R ) \dfrac{g(r)}{g(R)} g(R)g(r)

  首先:
m ( r ) = ∫ 0 r 4 π r 2 ρ d r = 4 π ρ c ∫ 0 r θ n r 2 d r = 4 π ρ c r 3 ξ 3 ∫ 0 ξ θ n ξ 2 d ξ m(r)=\int^r_0 4\pi r^2\rho dr=4\pi\rho_c\int^r_0\theta^n r^2 dr=4\pi\rho_c\frac{r^3}{\xi^3}\int^\xi_0\theta^n\xi^2d\xi m(r)=0r4πr2ρdr=4πρc0rθnr2dr=4πρcξ3r30ξθnξ2dξ
  由前面提到的Lana-Emden方程,得到:
m ( r ) = 4 π ρ c r 3 ( − 1 ξ d θ d ξ ) M ( r ) = 4 π ρ c R 3 ( − 1 ξ d θ d ξ ) ξ = ξ 1 ρ ˉ = 3 ρ c ( − 1 ξ d θ d ξ ) ξ = ξ 1 m(r)=4\pi\rho_c r^3\left(-\frac{1}{\xi}\frac{d\theta}{d\xi}\right)\\ M(r)=4\pi\rho_c R^3\left(-\frac{1}{\xi}\frac{d\theta}{d\xi}\right)_{\xi=\xi_1}\\ \bar{\rho}=3\rho_c\left(-\frac{1}{\xi}\frac{d\theta}{d\xi}\right)_{\xi=\xi_1} m(r)=4πρcr3(ξ1dξdθ)M(r)=4πρcR3(ξ1dξdθ)ξ=ξ1ρˉ=3ρc(ξ1dξdθ)ξ=ξ1
  对 d Φ d r = − G m ( r ) r 2 \dfrac{d\Phi}{dr}=-\dfrac{Gm(r)}{r^2} drdΦ=r2Gm(r)积分:
Φ ( r ) = − 4 π G ρ c ∫ r R r ′ ( − 1 ξ ′ d θ d ξ ′ ) d r ′ = − 4 π G ρ c r n 2 ∫ ξ ξ 1 ξ ′ ( − 1 ξ ′ d θ d ξ ′ ) d ξ ′ = − 4 π G ρ c r n 2 θ ( ξ ) \begin{aligned} \Phi(r)&=-4\pi G\rho_c\int^R_r r'\left(-\frac{1}{\xi'}\frac{d\theta}{d\xi'}\right)dr'\\ &=-4\pi G\rho_c r^2_n\int^{\xi_1}_\xi \xi'\left(-\frac{1}{\xi'}\frac{d\theta}{d\xi'}\right)d\xi'\\ &=-4\pi G\rho_c r_n^2\theta(\xi) \end{aligned} Φ(r)=4πGρcrRr(ξ1dξdθ)dr=4πGρcrn2ξξ1ξ(ξ1dξdθ)dξ=4πGρcrn2θ(ξ)

Φ c = − 4 π G M 4 π R 3 1 ( − 1 ξ d θ d ξ ) ξ 1 R 2 ξ 1 2 = − G M R 1 ( − ξ d θ d ξ ) ξ 1 \Phi_c=-4\pi G\frac{M}{4\pi R^3}\frac{1}{\left(-\frac{1}{\xi}\frac{d\theta}{d\xi}\right)_{\xi_1}}\frac{R^2}{\xi^2_1}=-\frac{GM}{R}\frac{1}{\left(-\xi\frac{d\theta}{d\xi}\right)_{\xi_1}} Φc=4πG4πR3M(ξ1dξdθ)ξ11ξ12R2=RGM(ξdξdθ)ξ11

  中心压强:
P c = − Φ c n + 1 ρ c = G M R 1 ( − ξ d θ d ξ ) ξ 1 M 4 π R 3 1 ( − 1 ξ d θ d ξ ) ξ 1 = G M 2 4 π R 4 1 ( d θ d ξ ) ξ 1 2 \begin{aligned} P_c&=-\frac{\Phi_c}{n+1}\rho_c\\ &=\frac{GM}{R}\frac{1}{\left(-\xi\frac{d\theta}{d\xi}\right)_{\xi_1}}\frac{M}{4\pi R^3}\frac{1}{\left(-\frac{1}{\xi}\frac{d\theta}{d\xi}\right)_{\xi_1}}\\ &=\frac{GM^2}{4\pi R^4}\frac{1}{\left(\frac{d\theta}{d\xi}\right)_{\xi_1}^2} \end{aligned} Pc=n+1Φcρc=RGM(ξdξdθ)ξ114πR3M(ξ1dξdθ)ξ11=4πR4GM2(dξdθ)ξ121

应用到白矮星

  在非相对论性情形下:
R = ξ 1 r n = 3.65 r n = 3.65 [ ( n + 1 ) K ρ c 1 n − 1 4 π G ] 1 2 R=\xi_1 r_n=3.65 r_n=3.65\left[\frac{(n+1)K\rho_c^{\frac{1}{n}-1}}{4\pi G}\right]^\frac{1}{2} R=ξ1rn=3.65rn=3.65[4πG(n+1)Kρcn11]21
  将 n = 3 2 n=\dfrac{3}{2} n=23 ρ c ρ ˉ = 5.99 \dfrac{\rho_c}{\bar\rho}=5.99 ρˉρc=5.99 ρ ˉ = 3 4 π M R 3 \bar\rho=\dfrac{3}{4\pi}\dfrac{M}{R^3} ρˉ=4π3R3M代入上式,得到质量与半径的关系:
R = 3.65 [ 5 K 3 / 2 8 π G ( 5.99 3 4 π M R 3 ) − 1 3 ] 1 2 M 1 3 R = 2.353 G K 3 / 2 = 3.5404 × 1 0 20 μ e − 5 / 3 ( c g s ) = 0.04048 μ e − 5 / 3 M ⊙ 1 / 3 R ⊙ R=3.65\left[\frac{5K_{3/2}}{8\pi G}\left(5.99\frac{3}{4\pi}\frac{M}{R^3}\right)^{-\frac{1}{3}}\right]^\frac{1}{2}\\ M^\frac{1}{3}R=\frac{2.353}{G}K_{3/2}=3.5404\times 10^{20}\mu_e^{-5/3}(cgs)=0.04048\mu_e^{-5/3}M_\odot^{1/3}R_\odot R=3.65[8πG5K3/2(5.994π3R3M)31]21M31R=G2.353K3/2=3.5404×1020μe5/3(cgs)=0.04048μe5/3M1/3R
  在相对论性情形下:
R = ξ 1 r n = 6.9 [ K 3 π G ] 1 / 2 ρ c − 1 / 3 = 6.9 [ K 3 π G ] 1 / 2 ( 4 π 3 ∗ 54.2 ) 1 / 3 M − 1 / 3 R M = 6.9 × 4 3 ∗ 54.2 π [ K 3 G ] 3 2 = 4.559 [ K 3 G ] 3 2 = 1.161 × 1 0 34 g μ e 2 ≈ 1.46 M ⊙ R=\xi_1 r_n=6.9\left[\frac{K_3}{\pi G}\right]^{1/2}\rho_c^{-1/3}=6.9\left[\frac{K_3}{\pi G}\right]^{1/2}\left(\frac{4\pi}{3\ast 54.2}\right)^{1/3}M^{-1/3}R\\ M=6.9\times\frac{4}{3\ast 54.2\sqrt{\pi}}\left[\frac{K_3}{G}\right]^\frac{3}{2}=4.559\left[\frac{K_3}{G}\right]^\frac{3}{2}=1.161\times\frac{10^{34} g}{\mu_e^2}\approx 1.46M_\odot R=ξ1rn=6.9[πGK3]1/2ρc1/3=6.9[πGK3]1/2(354.24π)1/3M1/3RM=6.9×354.2π 4[GK3]23=4.559[GK3]23=1.161×μe21034g1.46M
  此即白矮星的钱德拉塞卡质量(临界质量)

多方球的引力能

  利用物态方程和位力定理,可以给出多方球的引力势能

  将物态方程 P = K ρ 1 + 1 n P=K\rho^{1+\frac{1}{n}} P=Kρ1+n1代入到流体静力平衡方程:
1 ρ d P d r = ( n + 1 ) d ( P ρ ) d r = − G m r 2 \frac{1}{\rho}\frac{dP}{dr}=(n+1)\frac{d\left(\frac{P}{\rho}\right)}{dr}=-\frac{Gm}{r^2} ρ1drdP=(n+1)drd(ρP)=r2Gm
  并对 r r r进行积分: ∫ r ∞ d r \int^\infty_r dr rdr
( n + 1 ) P ρ = − ∫ r ∞ G M r ′ 2 d r ′ + ∫ R ∞ G M r ′ 2 d r ′ = − Φ − G M R Ω = 1 2 ∫ 0 R Φ d m = − ( n + 1 2 ∫ 0 R P ρ d m + 1 2 G M 2 R ) = − n + 1 2 ∫ 0 R P d V − 1 2 G M 2 R (n+1)\frac{P}{\rho}=-\int^\infty_r\frac{GM}{r'^2}dr'+\int^\infty_R\frac{GM}{r'^2}dr'=-\Phi-\frac{GM}{R}\\ \Omega=\frac{1}{2}\int^R_0 \Phi dm=-\left(\frac{n+1}{2}\int^R_0\frac{P}{\rho} dm+\frac{1}{2}\frac{GM^2}{R}\right)=-\frac{n+1}{2}\int^R_0 PdV-\frac{1}{2}\frac{GM^2}{R} (n+1)ρP=rr2GMdr+Rr2GMdr=ΦRGMΩ=210RΦdm=(2n+10RρPdm+21RGM2)=2n+10RPdV21RGM2
  在计算引力势能时,应该取无穷远处势能为0。右侧第一项为引力势,第二项为从 r r r积到 R R R所出现的项。再对各个位置的引力势进行积分,即可得到引力能 Ω \Omega Ω

  随后由位力定理:
∫ V 3 P d V = 3 ( γ − 1 ) U = − Ω \int_V 3PdV=3(\gamma-1)U=-\Omega V3PdV=3(γ1)U=Ω
  得到:
− Ω = 3 5 − n G M 2 R -\Omega=\frac{3}{5-n}\frac{GM^2}{R} Ω=5n3RGM2
  当 n = 5 n=5 n=5时, − Ω → ∞ -\Omega\rightarrow \infty Ω

库仑作用

  在之前的讨论中,没有考虑带电粒子间的库仑作用能。现在假设集体电中性,只考虑近邻的粒子:
E i , c ∼ ( Z i e ) 2 r i ∼ ( Z i e ) 2 n i 1 / 3 = 9.01 × 1 0 − 11 Z i 2 ( ρ X i 100 A i ) 1 / 3 e r g E_{i,c}\sim\frac{(Z_ie)^2}{r_i}\sim(Z_i e)^2n_i^{1/3}=9.01\times 10^{-11}Z_i^2\left(\frac{\rho X_i}{100 A_i}\right)^{1/3} erg Ei,cri(Zie)2(Zie)2ni1/3=9.01×1011Zi2(100AiρXi)1/3erg
  相比之下,粒子的热运动动能为:
E k ∼ 3 k T = 6.2 × 1 0 − 9 ( T / 1.5 × 1 0 7 K ) e r g E_k\sim 3kT=6.2\times 10^{-9}(T/1.5\times 10^7 K)erg Ek3kT=6.2×109(T/1.5×107K)erg
  在太阳的中心, E k ≫ E i , c E_k\gg E_{i,c} EkEi,c。而在低质量主序恒星中,库仑作用能重要

  进行更详细的讨论,考虑电子与离子统计分布。在原子核附近的电荷为 Q Q Q,随后将其余电荷看成空间连续分布,则根据泊松方程有:
∇ 2 ϕ ( r ⃗ ) = − 4 π ∑ j q j n j ( r ⃗ ) − 4 π Q δ ( ⃗ r ) \nabla^2\phi(\vec r)=-4\pi \sum_j q_jn_j(\vec r)-4\pi Q\delta \vec (r) 2ϕ(r )=4πjqjnj(r )4πQδ( r)
  其中 j j j代表电子或原子核

  而根据热平衡,有:
n j ( r ⃗ ) = n j ˉ exp ⁡ ( − q j ϕ ( r ⃗ ) k T ) n_j(\vec r)=\bar{n_j}\exp\left(-\frac{q_j\phi(\vec r)}{kT}\right) nj(r )=njˉexp(kTqjϕ(r ))
  整体中性:
∑ j q j n j ˉ = 0 \sum_j q_j\bar{n_j}=0 jqjnjˉ=0
  由弱场近似, 有 q j ϕ ( r ⃗ ) ≪ k T 有q_j\phi(\vec r)\ll kT qjϕ(r )kT,因此:
exp ⁡ ( − q j ϕ ( r ⃗ ) k T ) ≈ 1 − q j ϕ ( r ⃗ ) k T \exp\left(-\frac{q_j\phi(\vec r)}{kT}\right)\approx 1-\frac{q_j\phi(\vec r)}{kT} exp(kTqjϕ(r ))1kTqjϕ(r )
  将 n j ( r ⃗ ) n_j(\vec r) nj(r )代入到泊松方程中:
∇ 2 ϕ ( r ⃗ ) = 4 π ( ∑ j q j 2 n j ˉ k T ) ϕ ( r ⃗ ) − 4 π Q δ ( r ⃗ ) \nabla^2\phi(\vec r)=4\pi(\sum_j \frac{q_j^2\bar{n_j}}{kT})\phi(\vec r)-4\pi Q\delta(\vec r) 2ϕ(r )=4π(jkTqj2njˉ)ϕ(r )4πQδ(r )
  德拜长度(等离子体屏蔽半径,原子核库仑影响半径)定义为:
λ D ≡ ( k T 4 π ∑ j q j 2 n j ˉ ) 1 2 \lambda_D\equiv\left(\frac{kT}{4\pi \sum_j q^2_j\bar{n_j}}\right)^\frac{1}{2} λD(4πjqj2njˉkT)21
  由此将泊松方程的解写作:
ϕ ( r ⃗ ) = Q r exp ⁡ ( − r λ D ) \phi(\vec r)=\frac{Q}{r}\exp\left(-\frac{r}{\lambda_D}\right) ϕ(r )=rQexp(λDr)
  原子核附近的势为:
ϕ ( r ⃗ ) = Z i e r exp ⁡ ( − r λ D ) \phi(\vec r)=\frac{Z_i e}{r}\exp\left(-\frac{r}{\lambda_D}\right) ϕ(r )=rZieexp(λDr)
  其他电荷产生的势为:
ϕ o t h e r ( r ⃗ ) = Z i e r [ exp ⁡ ( − r λ D ) − 1 ] \phi_{other}(\vec r)=\frac{Z_i e}{r}\left[\exp\left(-\frac{r}{\lambda_D}\right)-1\right] ϕother(r )=rZie[exp(λDr)1]
  在离子位置, r ⃗ → 0 \vec r\rightarrow 0 r 0,电势趋近于 − Z i e λ D -\dfrac{Z_i e}{\lambda_D} λDZie

  从而求得单位体积的平均库仑能:
u C o u l o m b ∼ 1 2 ∑ i Z i e ( − Z i e λ D ) n 0 i = − 1 2 ∑ i ( Z i e ) 2 n 0 i [ 4 π k T ∑ j ( Z j e ) 2 n 0 j ] 1 2 = − ( π k T ) 1 2 [ ∑ j ( Z j e ) 2 n 0 j ] 3 2 \begin{aligned} u_{Coulomb}&\sim \frac{1}{2}\sum_i Z_ie \left(-\frac{Z_i e}{\lambda_D}\right)n_{0i}\\ &=-\frac{1}{2}\sum_i(Z_i e)^2n_{0i}\left[\frac{4\pi}{kT}\sum_j(Z_j e)^2 n_{0j}\right]^\frac{1}{2}\\ &=-\left(\frac{\pi}{kT}\right)^\frac{1}{2}\left[\sum_j(Z_j e)^2n_{0j}\right]^\frac{3}{2} \end{aligned} uCoulomb21iZie(λDZie)n0i=21i(Zie)2n0i[kT4πj(Zje)2n0j]21=(kTπ)21[j(Zje)2n0j]23
  对所有种类的粒子求和:
U C o u l o m b = V u C o u l o m b = B V T U_{Coulomb}=Vu_{Coulomb}=\frac{B}{\sqrt{VT}} UCoulomb=VuCoulomb=VT B
  利用热力学第一定律,可以给出熵和压强:
S ( V , T ) = 3 2 N k ln ⁡ T + 1 3 B V T 1 T + g ( V ) P = N k T V + 1 3 B V T 1 V = P K i n e t i c + 1 3 u C o u l o m b S(V, T)=\frac{3}{2}Nk\ln T+\frac{1}{3}\frac{B}{\sqrt{VT}}\frac{1}{T}+g(V)\\ P=\frac{NkT}{V}+\frac{1}{3}\frac{B}{\sqrt{VT}}\frac{1}{V}=P_{Kinetic}+\frac{1}{3}u_{Coulomb} S(V,T)=23NklnT+31VT BT1+g(V)P=VNkT+31VT BV1=PKinetic+31uCoulomb
  其中, g ( V ) g(V) g(V)是积分常数

  对于纯氢而言:
P ∼ 2 ρ m H k T [ 1 − 0.0155 ( ρ T 3 ) 1 2 ] P\sim 2\frac{\rho}{m_H}kT\left[1-0.0155\left(\frac{\rho}{T^3}\right)^\frac{1}{2}\right] P2mHρkT[10.0155(T3ρ)21]
  对于纯氦而言:
P ∼ 3 ρ 4 m H k T [ 1 − 0.038 ( ρ T 3 ) 1 2 ] P\sim \frac{3\rho}{4m_H}kT\left[1-0.038\left(\frac{\rho}{T^3}\right)^\frac{1}{2}\right] P4mH3ρkT[10.038(T3ρ)21]
  接下来,估计对原子能级的影响。写出薛定谔方程:
H ^ ψ = E ψ H ^ = − h 2 2 m ∇ 2 − e ϕ ( r ⃗ ) ϕ ( r ) = Z i e r exp ⁡ ( − r λ D ) \hat H\psi=E\psi\\ \hat H=-\frac{h^2}{2m}\nabla^2-e\phi(\vec r)\\ \phi(r) = \frac{Z_i e}{r}\exp\left(-\frac{r}{\lambda_D}\right) H^ψ=EψH^=2mh22eϕ(r )ϕ(r)=rZieexp(λDr)
  氢原子的波函数基态为(假设影响是小量):
ψ 0 ( r ) = 1 π a 0 3 e − r a 0 ψ ( r ) = 1 π a 3 e − r a \psi_0(r)=\frac{1}{\sqrt{\pi a_0^3}}e^{-\frac{r}{a_0}}\\ \psi(r)=\frac{1}{\sqrt{\pi a^3}}e^{-\frac{r}{a}} ψ0(r)=πa03 1ea0rψ(r)=πa3 1ear
  则能量为:
E = ⟨ ψ ∣ H ∣ ψ ⟩ = − 1 π a 3 ∫ e − r a H e − r a 4 π r 2 d r E=\langle\psi|H|\psi\rangle=-\frac{1}{\pi a^3}\int e^{-\frac{r}{a}}He^{-\frac{r}{a}}4\pi r^2 dr E=ψHψ=πa31earHear4πr2dr
  上式对 a a a求极值,得到:
a R a 0 ( 1 + 3 a R 2 λ D ) = ( 1 + a R 2 λ D ) 3 E ( a R ) = − e 2 2 a R ( 1 − a R 2 λ D ) ( 1 + a R 2 λ D ) − 3 \frac{a_R}{a_0}\left(1+\frac{3 a_R}{2\lambda_D}\right)=\left(1+\frac{a_R}{2\lambda_D}\right)^3\\ E(a_R)=-\frac{e^2}{2a_R}\left(1-\frac{a_R}{2\lambda_D}\right)\left(1+\frac{a_R}{2\lambda_D}\right)^{-3} a0aR(1+2λD3aR)=(1+2λDaR)3E(aR)=2aRe2(12λDaR)(1+2λDaR)3
  其中, a R a_R aR是极小处的 a a a。对于 a R λ D \dfrac{a_R}{\lambda_D} λDaR很小的情况, a R → a 0 a_R\rightarrow a_0 aRa0,则有:
E ( a R ) → − e 2 2 a 0 + e 2 λ D E(a_R)\rightarrow -\frac{e^2}{2a_0}+\frac{e^2}{\lambda_D} E(aR)2a0e2+λDe2
  电离能为:
χ D = − E ( a R ) → χ − e 2 λ D = χ ( 1 − 2 a 0 λ D ) \chi_D=-E(a_R)\rightarrow \chi-\frac{e^2}{\lambda_D}=\chi\left(1-\frac{2a_0}{\lambda_D}\right) χD=E(aR)χλDe2=χ(1λD2a0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值