恒星结构和演化-学习记录1-第二章-基本方程

第一章-恒星的实测与经验关系

  (本章大致讲了恒星各种参数的测量方式,包括光度测量,质量测量,演化过程统计等,因为后面的部分太难了,所以这里就不整理了)

第二章:基本方程

流体近似

  在研究天体的过程中,由于研究的尺度远大于粒子之间的平均自由程,因此热平衡是仅限于局部的,对于不同的部位,温度都是不一样的。可以用局部的平均值来描写运动,这样的研究手法属于(辐射)流体近似

流体方程-质量守恒

  流体在运动的过程中质量保持不变(质量流入与流出相平衡):
∭ V ∂ ρ ∂ t d V + ∯ S ρ v ⃗ ⋅ d S ⃗ = 0 \iiint_V\frac{\partial \rho}{\partial t}dV+\oiint_S\rho\vec v\cdot d\vec S=0 VtρdV+ Sρv dS =0
  写为相应的微分形式:
∂ ρ ∂ t + ∇ ⋅ ( ρ v ⃗ ) = 0 \frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\vec v)=0 tρ+(ρv )=0
  在随流体元运动系中,可以写为:
1 ρ d ρ d t = − ∇ ⋅ v ⃗ (1) \frac{1}{\rho}\frac{d\rho}{dt}=-\nabla\cdot \vec v \tag{1} ρ1dtdρ=v (1)

流体方程-动量守恒

  考虑位于 ( x , y , z ) (x,y,z) (x,y,z)处的一个立方体积元,其边长分别为 Δ x ,   Δ y ,   Δ z \Delta x,\ \Delta y,\ \Delta z Δx, Δy, Δz,沿着 x ,   y ,   z x,\ y,\ z x, y, z轴方向,现在尝试对此体积元分析冲量与动量变化率,从 x x x方向入手:

引力带来的冲量

  首先考虑引力。体积元在引力势 Φ \Phi Φ中的引力加速度为 g = − ∇ Φ g=-\nabla\Phi g=Φ,因此引力 x x x方向分量为 − ∂ Φ ∂ x Δ m = − ∂ Φ ∂ x ρ ( x ⃗ ) Δ V -\dfrac{\partial\Phi}{\partial x}\Delta m=-\dfrac{\partial\Phi}{\partial x}\rho(\vec x)\Delta V xΦΔm=xΦρ(x )ΔV

压力带来的冲量

  随后考虑作用在 x x x方向两个表面上的压力(以正轴方向为正)。在 x x x处的压力为 P ( x , y , z ) Δ y Δ z P(x,y,z)\Delta y\Delta z P(x,y,z)ΔyΔz,在 x + d x x+dx x+dx处的压力为 − P ( x + d x , y , z ) Δ y Δ z -P(x+dx,y,z)\Delta y\Delta z P(x+dx,y,z)ΔyΔz,因此, x x x方向的两个表面差为:
P ( x , y , z ) Δ y Δ z − P ( x + d x , y , z ) Δ y Δ z = − ∂ P ∂ x Δ V P(x,y,z)\Delta y\Delta z-P(x+dx,y,z)\Delta y\Delta z=-\frac{\partial P}{\partial x}\Delta V P(x,y,z)ΔyΔzP(x+dx,y,z)ΔyΔz=xPΔV
  从左边到右边,使用了偏微分的定义

流入流出的动量

  考虑完冲量的作用后,再考虑动量的变化,首先是通过各个表面流入流出的动量速率。从 x x x方向上来看,运动的过程中,会有动量从 y y y方向的两个表面中流出。在这里,以流入为正,流出为负,则在 y + d y y+dy y+dy表面处沿 y y y方向流出的动量速率为:
− ρ ( x , y + Δ y , z ) v y ( x , y + Δ y , z ) Δ x Δ z v x ( x , y + Δ y , z ) -\rho(x,y+\Delta y,z)v_y(x,y+\Delta y,z)\Delta x\Delta z v_x(x, y+\Delta y, z) ρ(x,y+Δy,z)vy(x,y+Δy,z)ΔxΔzvx(x,y+Δy,z)
   y y y表面处沿 − y -y y方向流出的动量速率为:
ρ ( x , y , z ) v y ( x , y , z ) Δ x Δ z v x ( x , y , z ) \rho(x,y,z)v_y(x,y,z)\Delta x\Delta z v_x(x, y, z) ρ(x,y,z)vy(x,y,z)ΔxΔzvx(x,y,z)
  这两个表面相加,即可得到通过 y y y方向的动量流出速率:
− ∂ ∂ y ( ρ v y v x ) Δ V -\frac{\partial}{\partial y}(\rho v_y v_x)\Delta V y(ρvyvx)ΔV
  再考虑 x x x z z z,即可得到总的动量流出速率:
− ∇ ⋅ ( ρ v ⃗ v x ) Δ V -\nabla\cdot (\rho\vec v v_x)\Delta V (ρv vx)ΔV

自身的动量随时间变化

  还有一项是自身的动量变化:
∂ ∂ t ( ρ v x ) Δ V \frac{\partial}{\partial t}(\rho v_x)\Delta V t(ρvx)ΔV

利用动量守恒进行推导

  根据动量守恒,冲量等于动量的变化率,因此结合上述四式,有下述等式:
∂ ∂ t ( ρ v x ) Δ V + ∇ ⋅ ( ρ v ⃗ v x ) Δ V = − ∂ P ∂ x Δ V − ∂ Φ ∂ x ρ ( x ⃗ ) Δ V ∂ ∂ t ( ρ v x ) + ∇ ⋅ ( ρ v ⃗ v x ) = − ∂ P ∂ x − ∂ Φ ∂ x ρ ( x ⃗ ) \begin{aligned} \frac{\partial}{\partial t}(\rho v_x)\Delta V+\nabla\cdot (\rho\vec v v_x)\Delta V&=-\frac{\partial P}{\partial x}\Delta V-\dfrac{\partial\Phi}{\partial x}\rho(\vec x)\Delta V\\ \frac{\partial}{\partial t}(\rho v_x)+\nabla\cdot (\rho\vec v v_x)&=-\frac{\partial P}{\partial x}-\dfrac{\partial\Phi}{\partial x}\rho(\vec x) \end{aligned} t(ρvx)ΔV+(ρv vx)ΔVt(ρvx)+(ρv vx)=xPΔVxΦρ(x )ΔV=xPxΦρ(x )

  结合流体随动坐标系微分的等式 d d t = ∂ ∂ t + v ⃗ ⋅ ∇ \dfrac{d}{dt}=\dfrac{\partial}{\partial t}+\vec v\cdot \nabla dtd=t+v ,动量守恒等式简化为:
ρ d v x d t = − ∂ P ∂ x − ∂ Φ ∂ x ρ ( x ⃗ ) \rho\dfrac{dv_x}{dt}=-\frac{\partial P}{\partial x}-\dfrac{\partial\Phi}{\partial x}\rho(\vec x) ρdtdvx=xPxΦρ(x )
  最后考虑 y y y z z z这两个方向,即可得到矢量式:
ρ d v ⃗ d t = − ∇ P − ρ ∇ P \rho\frac{d\vec v}{dt}=-\nabla P -\rho\nabla P ρdtdv =PρP

流体方程-能量守恒

从热力学第一定律出发

  热力学第一定律表示为:
d Q = d ϵ + P d V dQ=d\epsilon+P dV dQ=dϵ+PdV

做功项

  对于单位质量物质而言,其内能为 ϵ \epsilon ϵ,体积为 V = 1 ρ V=\dfrac{1}{\rho} V=ρ1,因此,做功项可以写为:
P d V = − ( P ρ 2 ) d ρ = P ρ ∇ ⋅ v ⃗ d t PdV=-\left(\frac{P}{\rho^2}\right)d\rho=\frac{P}{\rho}\nabla\cdot\vec vdt PdV=(ρ2P)dρ=ρPv dt
  其中,第二个等号是代入了随流体元运动系中的质量守恒方程微分形式(式(1))

热能项

  热能包括两项,第一项表示产能或损失,第二项表示表面流入或流出的能量:
d Q = q d t − 1 ρ ∇ ⋅ F ⃗ d t = ( ρ q d t − ∇ ⋅ F ⃗ d t ) / ρ dQ=qdt-\dfrac{1}{\rho}\nabla\cdot\vec Fdt=(\rho qdt-\nabla\cdot \vec F dt)/\rho dQ=qdtρ1F dt=(ρqdtF dt)/ρ
  其中, q q q为单位质量的产能率, F ⃗ \vec F F 为能流密度(我猜测这个能流密度是per体积的,因此才会乘一个 V = 1 ρ V=\dfrac{1}{\rho} V=ρ1

能量方程

  将上述的做功项和热能项代入到热力学第一定律中,即可得到能量方程:
ρ d ϵ d t = − P ∇ ⋅ v ⃗ − ∇ ⋅ F ⃗ + ρ q \rho\frac{d\epsilon}{dt}=-P\nabla\cdot \vec v-\nabla\cdot \vec F+\rho q ρdtdϵ=Pv F +ρq

能量方程的另一形式

  热力学第一定律还可以变换为如下的形式:
d Q = d ϵ + P d V = ( ∂ ϵ ∂ V ) V d T + [ ( ∂ ϵ ∂ V ) T + P ] d V dQ=d\epsilon+PdV=\left(\frac{\partial \epsilon}{\partial V}\right)_V dT+\left[\left(\frac{\partial\epsilon}{\partial V}\right)_T+P\right]dV dQ=dϵ+PdV=(Vϵ)VdT+[(Vϵ)T+P]dV
  利用各种热力学关系以及麦克斯韦关系式,有:
[ ( ∂ ϵ ∂ V ) T + P ] d V = − T ρ ( ∂ P ∂ T ) V d ρ ρ = − P ρ δ α d ρ ρ \left[\left(\frac{\partial\epsilon}{\partial V}\right)_T+P\right]dV=-\frac{T}{\rho}\left(\frac{\partial P}{\partial T}\right)_V\frac{d\rho}{\rho}=-\frac{P}{\rho}\frac{\delta}{\alpha}\frac{d\rho}{\rho} [(Vϵ)T+P]dV=ρT(TP)Vρdρ=ρPαδρdρ
  其中:
α ≡ ( ∂ ln ⁡ ρ ∂ ln ⁡ P ) T = − P V ( ∂ V ∂ P ) T δ ≡ − ( ∂ ln ⁡ ρ ∂ ln ⁡ T ) P = T V ( ∂ V ∂ T ) P \begin{aligned} \alpha&\equiv\left(\frac{\partial \ln\rho}{\partial\ln P}\right)_T=-\frac{P}{V}\left(\frac{\partial V}{\partial P}\right)_T\\ \delta&\equiv-\left(\frac{\partial \ln\rho}{\partial\ln T}\right)_P=\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_P \end{aligned} αδ(lnPlnρ)T=VP(PV)T(lnTlnρ)P=VT(TV)P
  由于:
c V ≡ ( d Q d T ) V = ( ∂ ϵ ∂ T ) V c P ≡ ( d Q d T ) P = ( ∂ ϵ ∂ T ) P + P ( ∂ V ∂ T ) P \begin{aligned} c_V&\equiv\left(\frac{dQ}{dT}\right)_V=\left(\frac{\partial \epsilon}{\partial T}\right)_V\\ c_P&\equiv\left(\frac{dQ}{dT}\right)_P=\left(\frac{\partial \epsilon}{\partial T}\right)_P+P\left(\frac{\partial V}{\partial T}\right)_P \end{aligned} cVcP(dTdQ)V=(Tϵ)V(dTdQ)P=(Tϵ)P+P(TV)P
  因此:
d Q = ( ∂ Q ∂ T ) P d T + ( ∂ Q ∂ P ) T d P = c P d T + T ( ∂ S ∂ P ) T d P = c P d T − T ( ∂ V ∂ T ) P d P = c P d T − δ ρ d P \begin{aligned} dQ&=\left(\frac{\partial Q}{\partial T}\right)_PdT+\left(\frac{\partial Q}{\partial P}\right)_T dP\\ &=c_PdT+T\left(\frac{\partial S}{\partial P}\right)_TdP\\ &=c_P dT-T\left(\frac{\partial V}{\partial T}\right)_PdP\\ &=c_PdT-\frac{\delta}{\rho}dP \end{aligned} dQ=(TQ)PdT+(PQ)TdP=cPdT+T(PS)TdP=cPdTT(TV)PdP=cPdTρδdP
  与前面那种形式相对比:
c P d T − δ ρ d P = ( ρ q d t − ∇ ⋅ F ⃗ d t ) / ρ c_PdT-\frac{\delta}{\rho}dP=(\rho qdt-\nabla\cdot \vec F dt)/\rho cPdTρδdP=(ρqdtF dt)/ρ
  定义:
− q g ≡ c P ∂ T ∂ t − δ ρ ∂ P ∂ t = q − ∇ ⋅ F ⃗ ρ -q_g\equiv c_P\frac{\partial T}{\partial t}-\frac{\delta}{\rho}\frac{\partial P}{\partial t}=q-\frac{\nabla\cdot\vec F}{\rho} qgcPtTρδtP=qρF

能流

  能流:单位时间内,通过单位面积,从一边到另一边的能量

考虑介于 z − λ / 2 z-\lambda /2 zλ/2 z + λ / 2 z+\lambda /2 z+λ/2之间的粒子,设粒子的单位体积密度为 n i n_i ni,运动速度为 v T v_T vT,则单位时间内穿越这两个界面的粒子数为 1 3 n i v T Δ x Δ y \dfrac{1}{3}n_iv_T\Delta x\Delta y 31nivTΔxΔy

  从下层和上层进入的粒子具有能量差 − e i ( z + λ / 2 ) + e i ( z − λ / 2 ) -e_i(z+\lambda/2)+e_i(z-\lambda/2) ei(z+λ/2)+ei(zλ/2) e i ( z ) e_i(z) ei(z)为界面 z z z处粒子的平均能量),将此能量差和穿过界面的粒子数相乘,并写为矢量形式,即可得到能流的表达式:
F ⃗ i = − 1 3 v T λ ∇ u i \vec F_i = -\frac{1}{3}v_T\lambda\nabla u_i F i=31vTλui
  其中, u i = n i e i = ρ i ϵ i u_i=n_i e_i=\rho_i\epsilon_i ui=niei=ρiϵi

   Δ x \Delta x Δx Δ y \Delta y Δy怎么不见了?)

  对于离子和电子而言, u = 3 2 n k T u=\dfrac{3}{2}nkT u=23nkT,如果有多种粒子同时存在, 则可以直接将它们的贡献相加

Boltzmann 输运方程与流体方程

  Boltzmann输运方程是普适的,描述了相空间分布的连续性:
∂ f ( x i ,   p i ,   t ) ∂ t + ∑ i = 1 3 ( v i ∂ f ∂ x i + p ˙ i ∂ f ∂ p i ) = S \frac{\partial f(x_i,\ p_i,\ t)}{\partial t}+\sum^3_{i=1}\left(v_i\frac{\partial f}{\partial x_i}+\dot p_i\frac{\partial f}{\partial p_i}\right)=S tf(xi, pi, t)+i=13(vixif+p˙ipif)=S
  其中, S S S为源函数,包含了所有非平滑的过程(例如:碰撞散射,与粒子产生、煙灭)

  这里有些深邃,没看懂

位力定理

推导过程

  从动量守恒出发:
ρ d 2 r ⃗ d t 2 = − ∇ P − ρ ∇ Φ \rho\frac{d^2\vec r}{dt^2}=-\nabla P-\rho\nabla\Phi ρdt2d2r =PρΦ
  两边点乘 r ⃗ \vec r r ,并对空间积分:
∫ m r ⃗ ⋅ r ⃗ ¨ ρ d V = − ∫ V r ⃗ ⋅ ∇ P d V − ∫ m r ⃗ ⋅ ∇ Φ d m \int_m\vec r\cdot \ddot{\vec r}\rho dV=-\int_V\vec r\cdot\nabla P dV-\int_m\vec r\cdot\nabla\Phi dm mr r ¨ρdV=Vr PdVmr Φdm
  先计算左边的项:
r ⃗ ⋅ r ⃗ ¨ = d d t ( r ⃗ ⋅ r ⃗ ˙ ) − r ⃗ ˙ 2 = 1 2 d 2 d t 2 ( r ⃗ ⋅ r ⃗ ) − r ⃗ ˙ 2 \vec r\cdot\ddot{\vec r}=\frac{d}{dt}(\vec r\cdot\dot{\vec r})-\dot{\vec r}^2=\frac{1}{2}\frac{d^2}{dt^2}(\vec r\cdot \vec r)-\dot{\vec r}^2 r r ¨=dtd(r r ˙)r ˙2=21dt2d2(r r )r ˙2

∫ m d m r ⃗ ⋅ r ⃗ ¨ = 1 2 d 2 I d t 2 − 2 K E \int_m dm\vec r\cdot\ddot{\vec r}=\frac{1}{2}\frac{d^2I}{dt^2}-2KE mdmr r ¨=21dt2d2I2KE

  其中, I ≡ ∫ m r 2 d m I\equiv\int_mr^2 dm Imr2dm K E ≡ 1 2 ∫ m r ⃗ ˙ 2 d m KE\equiv\frac{1}{2}\int_m\dot{\vec r}^2 dm KE21mr ˙2dm

  随后计算右边的第一项:
r ⃗ ⋅ ∇ P = ∇ ⋅ ( P r ⃗ ) − 3 P \vec r\cdot \nabla P=\nabla\cdot(P\vec r)-3P r P=(Pr )3P

− ∫ V r ⃗ ⋅ ∇ P d V = − ∫ V ∇ ⋅ ( P r ⃗ ) d V + ∫ V 3 P d V = − ∯ S P r ⃗ ⋅ d S ⃗ + ∫ V 3 P d V \begin{aligned} -\int_V\vec r\cdot \nabla P dV&=-\int_V\nabla\cdot(P\vec r)dV+\int_V 3PdV\\ &=-\oiint_S P\vec r\cdot d\vec S+\int_V 3PdV \end{aligned} Vr PdV=V(Pr )dV+V3PdV= SPr dS +V3PdV

  取常压强面 S S S为边界,则有:
− ∯ S P r ⃗ ⋅ d S ⃗ = − P s ∯ S r ⃗ ⋅ d S ⃗ = − P s ∫ V ∇ ⋅ ( r ⃗ ) d V = − 3 P S V -\oiint_S P\vec r\cdot d\vec S=-P_s\oiint_S\vec r\cdot d\vec S=-P_s\int_V\nabla\cdot(\vec r)dV=-3P_S V SPr dS =Ps Sr dS =PsV(r )dV=3PSV
  将物态方程假设为 P = ( γ − 1 ) u P=(\gamma-1)u P=(γ1)u γ \gamma γ为绝热系数),则有:
∫ V 3 P d V = 3 ( γ − 1 ) U \int_V 3PdV=3(\gamma -1)U V3PdV=3(γ1)U
  其中, U U U为内能密度

  最后计算右边的第二项。 Φ \Phi Φ是引力势,因此:
Φ ( r ⃗ ) = − G ∫ d m ∣ r ⃗ − r ⃗ ′ ∣ \Phi(\vec r)=-G\int\dfrac{dm}{|\vec r-\vec{r}'|} Φ(r )=Gr r dm
  代入进去后计算得到的正是引力势能:
Ω = − G 2 ∬ d m d m ′ ∣ r ⃗ − r ⃗ ′ ∣ \Omega=-\frac{G}{2}\iint\dfrac{dmdm'}{|\vec r-\vec r'|} Ω=2Gr r dmdm

位力定理的一般形式

  最后得到位力定理的一般形式:
1 2 d 2 I d t 2 = 2 K E + 3 ( γ − 1 ) U + Ω − 3 P s V \frac{1}{2}\frac{d^2 I}{dt^2}=2KE+3(\gamma-1)U+\Omega-3P_sV 21dt2d2I=2KE+3(γ1)U+Ω3PsV
  取时间平衡后,对准稳态系统而言, ⟨ d 2 I d t 2 ⟩ = 0 \left\langle\dfrac{d^2I}{dt^2}\right\rangle=0 dt2d2I=0

  对于恒星的表明,取 P S ≈ 0 P_S\approx 0 PS0,而在流体静力平衡的情况下, K E = 0 KE=0 KE=0,由此将一般形式简化为:
3 ( γ − 1 ) U + Ω = 0 3(\gamma-1)U+\Omega=0 3(γ1)U+Ω=0
  对于非相对论性理想气体而言, γ = 5 / 3 \gamma=5/3 γ=5/3,此时得到:
2 U + Ω = 0 2U+\Omega=0 2U+Ω=0

球对称稳态恒星结构与演化方程

几处近似假设

  孤立:天体不受其他天体的影响

  球对称:转动能相比于引力能而言忽略不计

  形成时化学均匀

球对称恒星结构演化方程组

质量守恒

1 ρ d ρ d t = − ∇ ⋅ v ⃗ \frac{1}{\rho}\frac{d\rho}{dt}=-\nabla\cdot \vec v ρ1dtdρ=v

  改写为:
1 ρ d ρ d t = − 1 r 2 d d r ( r 2 v r ) \frac{1}{\rho}\frac{d\rho}{dt}=-\frac{1}{r^2}\frac{d}{dr}(r^2v_r) ρ1dtdρ=r21drd(r2vr)

动量方程

ρ d v ⃗ d t = − ∇ P − ρ ∇ Φ \rho\frac{d\vec v}{dt}=-\nabla P-\rho\nabla\Phi ρdtdv =PρΦ

  改写为:
∂ 2 r ∂ t 2 = − 1 ρ ∂ P ∂ r − G m r 2 = − 4 π r 2 ∂ P ∂ m − G m r 2 \begin{aligned} \frac{\partial^2 r}{\partial t^2}&=-\frac{1}{\rho}\frac{\partial P}{\partial r}-\frac{Gm}{r^2}\\ &=-4\pi r^2\frac{\partial P}{\partial m}-\frac{Gm}{r^2} \end{aligned} t22r=ρ1rPr2Gm=4πr2mPr2Gm
  其中:
m ( r ) = ∫ 0 r 4 π r ′ 2 ρ ( r ′ ) d r ′ m(r)=\int_0^r 4\pi r'^2\rho(r')dr' m(r)=0r4πr2ρ(r)dr

能量方程

c P ∂ T ∂ t − δ ρ ∂ P ∂ t = q − ∇ ⋅ F ⃗ ρ c_P\frac{\partial T}{\partial t}-\frac{\delta}{\rho}\frac{\partial P}{\partial t}=q-\frac{\nabla\cdot \vec F}{\rho} cPtTρδtP=qρF

  改写为:
∂ l ∂ m = q − c P ∂ T ∂ t + δ ρ ∂ P ∂ t = q + q g \frac{\partial l}{\partial m}=q-c_P\frac{\partial T}{\partial t}+\frac{\delta}{\rho}\frac{\partial P}{\partial t}=q+q_g ml=qcPtT+ρδtP=q+qg

能量辐射运输方程

F ⃗ = − 1 3 v T λ ∇ U \vec F=-\frac{1}{3}v_T\lambda\nabla U F =31vTλU

  改写为:
l 4 π r 2 = − c 3 κ ρ d d r ( a T 4 ) \frac{l}{4\pi r^2}=-\frac{c}{3\kappa\rho}\frac{d}{dr}(aT^4) 4πr2l=3κρcdrd(aT4)
  其中, a = 7.556 × 1 0 − 15 e r g   c m − 3   K − 4 a=7.556\times 10^{-15}erg\ cm^{-3}\ K^{-4} a=7.556×1015erg cm3 K4 κ \kappa κ为质量吸收系数,单位质量的截面

重要的时标

动力学时标

  偏离流体静力平衡后,若 γ > 4 / 3 \gamma>4/3 γ>4/3便能够恢复,恢复平衡的速度非常快,这个过程所需要的时间就是动力学时标

  动力学时标可以看做是自由落体的时标,因此:
t d y n ∼ R v ∼ R 3 G M ∼ 1 G ⟨ ρ ⟩ ≈ 40 ( R R ⊙ ) 3 / 2 ( M M ⊙ ) − 1 / 2 m i n t_{dyn}\sim \frac{R}{v}\sim\sqrt{\frac{R^3}{GM}}\sim\frac{1}{\sqrt{G\langle\rho\rangle}}\approx40\left(\frac{R}{R_\odot}\right)^{3/2}\left(\frac{M}{M_\odot}\right)^{-1/2} min tdynvRGMR3 Gρ 140(RR)3/2(MM)1/2min

热时标

  恒星冷下来所需要的时间:热能比上表面辐射光度
t K H ∼ G M 2 R L = 3 × 1 0 7 ( L L ⊙ ) − 1 ( R R ⊙ ) − 1 ( M M ⊙ ) 2 y r t_{KH}\sim\frac{GM^2}{RL}=3\times 10^7\left(\frac{L}{L_\odot}\right)^{-1}\left(\frac{R}{R_\odot}\right)^{-1}\left(\frac{M}{M_\odot}\right)^2 yr tKHRLGM2=3×107(LL)1(RR)1(MM)2yr

核聚变时标

  核聚变时标是恒星核反应的持续时间,记产生核反应的核比例为 f f f,核合成产能率为 η ≈ 0.7 % \eta\approx 0.7\% η0.7%,则核聚变的时标为:
t n u c = η f M c 2 L ≈ 1 0 10 ( M M ⊙ ) − 2.5 y r t_{nuc}=\frac{\eta fMc^2}{L}\approx 10^{10}\left(\frac{M}{M_\odot}\right)^{-2.5}yr tnuc=LηfMc21010(MM)2.5yr
  三种时标中,动力学时标最小,随后是热时标,最长的是核聚变时标

稳态球对称流体静力平衡下基本方程

  静态平衡:所有的时间微分都等于0:
v ⃗ = 0 ,   d 2 r ⃗ d t 2 ∼ 0 ,   d ϵ d t ∼ 0 ,   d ρ d t ∼ 0 \vec v=0,\ \frac{d^2\vec r}{dt^2}\sim 0,\ \frac{d\epsilon}{dt}\sim 0,\ \frac{d\rho}{dt}\sim 0 v =0, dt2d2r 0, dtdϵ0, dtdρ0
  欧拉形式:
{ d m d r = 4 π r 2 ρ d P d r = − ρ G m ( r ) r 2 d l d r = 4 π r 2 ρ q d d r ( a T 4 ) = − 3 κ ρ c l 4 π r 2 \left\{\begin{aligned} &\frac{dm}{dr}=4\pi r^2\rho\\ &\frac{dP}{dr}=-\rho\frac{Gm(r)}{r^2}\\ &\frac{dl}{dr}=4\pi r^2\rho q\\ &\frac{d}{dr}(aT^4)=-\frac{3\kappa\rho}{c}\frac{l}{4\pi r^2} \end{aligned}\right. drdm=4πr2ρdrdP=ρr2Gm(r)drdl=4πr2ρqdrd(aT4)=c3κρ4πr2l

  其中:

  式1为球的质量,式2为压强梯度,式3为能量梯度——两个壳层之间的核合成能量,式4为辐射方程

  将分母替换为 d m dm dm(质量为自变量),则可以改写为拉格朗日描述:
{ d r d m = 1 4 π r 2 ρ d P d m = − G m ( r ) 4 π r 4 d l d m = q d T d m = − 3 κ 64 π 2 a c l r 4 T 3 \left\{\begin{aligned} & \frac{dr}{dm}=\frac{1}{4\pi r^2\rho}\\ & \frac{dP}{dm}=-\frac{Gm(r)}{4\pi r^4}\\ & \frac{dl}{dm}=q\\ & \frac{dT}{dm}=-\frac{3\kappa}{64\pi^2 ac}\frac{l}{r^4T^3} \end{aligned}\right. dmdr=4πr2ρ1dmdP=4πr4Gm(r)dmdl=qdmdT=64π2ac3κr4T3l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值