图神经网络笔记(一)——设计动机和基础GNN

设计动机

  • CNN的提出给机器学习领域带来了巨大突破。它可以提取多尺度局部空间特征,并进一步将其组合成具有较强表示能力的特征,但是CNN只能处理欧几里得空间上的数据(即规则的数据),一个窗口无论移动到图片或一维序列的哪一个位置,其内部的结构都是一模一样的,因此CNN可以实现参数共享。而对于非欧几里得空间中的图,无法直接使用卷积和池化算子。

    • CNN三大特点:局部连接、共享权重、多层结构
  • 图嵌入旨在于学习用低维向量表示图的节点、边或子图。随着表示学习和嵌入学习的成功,deepwalk、、node2vec、LINE等方法先后被提出。但是这些方法有两大缺点:

    • 参数量随节点数线性增长,大部分方法不能处理有节点属性的图
    • 直接的嵌入方法缺乏泛化能力,无法处理动态增长的图

基础图神经网络

  • 为了根据输入的节点邻居更新节点状态,基础的GNN模型使用了一个带参数的函数f(局部转移函数,local transition function),这一函数由全部节点共享。为了得到节点的输出,引入另一个带参数的函数g(局部输出函数,local output functino)。于是,节点嵌入表示 h v h_{v} hv和输出嵌入表示 o v o_{v} ov公式化如下:

    • h v = f ( x v , x c o [ v ] , h n e [ v ] , x n e [ v ] ) h_{v}=f(x_{v}, x_{co[v]}, h_{ne[v]}, x_{ne[v]}) hv=f(xv,xco[v],hne[v],xne[v])
    • o v = g ( h v , x v ) o_{v}=g(h_{v}, x_{v}) ov=g(hv,xv)
    • 注: c o [ v ] co[v] co[v] n e [ v ] ne[v] ne[v]分别表示节点的边集合和节点集合, x x x h h h分别表示输入特征和隐状态。 x v , x c o [ v ] , h n e [ v ] , x n e [ v ] x_{v}, x_{co[v]}, h_{ne[v]}, x_{ne[v]} xv,xco[v],hne[v],xne[v]分别表示节点特征、该节点边的特征、该节点相邻节点的特征、该节点相邻节点的特征。
  • 将所有的状态、输出、特征和节点特征分别堆叠起来,并使用矩阵形式分别表示为 H , O , X , X N H, O, X, X_{N} H,O,X,XN,上面的公式则可以改写为:

    • H = F ( H , X ) H=F(H,X) H=F(H,X)
    • O = G ( H , X N ) O=G(H,X_{N}) O=G(H,XN)
    • F , G F, G F,G分别是全局转移函数和全局输出函数
  • 根据巴拿赫不动点定理,GNN采用如下迭代方式求解节点状态:

    • H t + 1 = F ( H t , X ) H^{t+1} = F(H^{t}, X) Ht+1=F(Ht,X) t t t表示第 t t t轮迭代
    • 巴拿赫不动点定理:巴拿赫不动点定理,又称为压缩映射定理或压缩映射原理,是度量空间理论的一个重要工具。它保证了度量空间的一定自映射的不动点的存在性和唯一性,并提供了求出这些不动点的构造性方法。
      • ρ ( x , y ) \rho (x, y) ρ(x,y)表示x, y之间的距离。巴拿赫不动点定理-压缩映射定理:设 ( X , ρ ) (X, \rho) (X,ρ)是一个完备距离空间, T T T X , ρ X, \rho X,ρ到其身的一个压缩映射,那么 X X X中存在唯一的 T T T不动点。
      • 压缩映射定义: T : ( X , ρ ) → ( X , ρ ) T:(X,\rho)\rightarrow (X,\rho) T:(X,ρ)(X,ρ)且满足对于 ∀ ( x , y ) ∈ X \forall (x, y)\in X (x,y)X,存在一个 0 < a < 1 0<a<1 0<a<1使得 ρ ( T ( x ) , T ( y ) ) ≤ a ρ ( x , y ) \rho (T(x), T(y))\leq a\rho (x, y) ρ(T(x),T(y))aρ(x,y)
  • 将目标信息作为监督信号,损失函数可以定义为: l o s s = ∑ i = 1 p ( t i − o i ) loss=\sum_{i=1}^{p}(t_{i}-o_{i}) loss=i=1p(tioi), t i t_{i} ti表示节点i的目标信息, p p p是有监督标签的数量。

注:笔记参考自书籍《图神经网络导论》,刘志远,周界,李泺秋。如有侵权,联系即删。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值