自回归模型(AR )

最近看到一些模型使用了自回归方法,这里就学习一下整理一下相关内容方便以后查阅。

自回归(Autoregression,简称AR)是一类广泛应用于时间序列分析和建模的统计模型。它的核心思想是将当前时刻的数据值表示为过去若干时刻数据值的线性组合,以及一个随机误差项。通过这种方式,自回归模型能够捕捉时间序列内部的自相关结构,从而实现对未来值的预测、对数据生成机制的理解,或对信号特征的建模。

自回归模型(AR )

AR 模型的引入

考虑如图所示的单摆系统。设 x t x_t xt 为第 t t t 次摆动过程中的摆幅。根据物理原理,第 t t t 次的摆幅 x t x_t xt 由前一次的摆幅 x t − 1 x_{t-1} xt1 决定,即有 x t = a 1 x t − 1 x_t=a_1x_{t-1} xt=a1xt1。考虑到空气振动的影响,我们往往假设
x t = a 1 x t − 1 + ε t , t ≥ 1 x_t=a_1x_{t-1}+\varepsilon_t,t\geq1 xt=a1xt1+εt,t1

其中,随机干扰 ε t ∼ N ( 0 , σ 2 ) ε_t \sim N(0, σ^2) εtN(0,σ2)

在这里插入图片描述

设初始时刻 x 0 = 1 x_0=1 x0=1,现在取不同的 a 1 a_1 a1 σ σ σ 值进行实验。实验结果如下图。

在这里插入图片描述
可以看出,参数 a 1 a_1 a1 对序列的稳定性起到决定性的作用,而噪声强度 σ 2 σ^2 σ2 决定了序列的波动程度。

在这里,我们称第一个公式为一阶自回归模型。更一般地,可以考虑序列值 x t x_t xt 可由前 p p p 个时刻的序列值及当前的噪声表出,即
x t = a 1 x t − 1 + a 2 x t − 2 + ⋯ + a p x t − p + ε t x_t=a_1x_{t-1}+a_2x_{t-2}+\cdots+a_px_{t-p}+\varepsilon_t xt=a1xt1+a2xt2++apxtp+εt

其中, a j a_j aj 为参数, ε t {ε_t} εt 为白噪声。

AR 模型的定义

如果 ε t \varepsilon_\mathrm{t} εt为白噪声,服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2) a 0 , a 1 , . . . , a p ( a p ≠ o ) \mathrm{a_0,a_1,...,a_p(a_p\neq o)} a0,a1,...,ap(ap=o)为实数,就称 p p p 阶差分方程
X t = a 0 + a 1 X t − 1 + a 2 X t − 2 + ⋯ + a p X t − p + ε t , t ∈ Z X_t=a_0+a_1X_{t-1}+a_2X_{t-2}+\cdots+a_pX_{t-p}+\varepsilon_t,t\in\mathbb{Z} Xt=a0+a1Xt1+a2Xt2++apXtp+εt,tZ

是一个 p p p 阶自回归模型,简称 A R ( p ) AR(p) AR(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值