FCOS算法解读

论文:Fully Convolutional One-Stage Object Detection
论文链接:https://arxiv.org/abs/1904.01355

代码链接:https://github.com/tianzhi0549/FCOS/

 

FCOS网络结构如下图所示:

FCOS使用FPN,每个head输出为三个分支分别为:类别分支、center-ness、回归分支。

损失函数如下所示:

类别损失函数使用focal loss,回归损失函数使用UnitBox论文中的IOU loss。

(x0, y0);(x1, y1)分别表示真值框左上角和右下角坐标。(x,y)为每个像素点坐标,回归目标为l*,t*,r*,b*。因此不需要提前设定anchor。

 

 当两个真值框存在交叠时,则会存在歧义样本,针对此情况,可通过FPN解决。计算(l*, t*, r*, b*),mi为每个特征层最大距离,如果max(l*, t*, r*, b*) > mi or max(l*, t*, r*, b*) < mi−1,则此位置为负样本,不进行计算。P3层采集范围[0, 64];P4层采集范围为[64,128],以此类推。

对于大小相近又存在交叠的真值框,FPN无法区分,只能通过选择面积最小的真值框为回归目标

为了抑制低质量检测框,即减少误检,引入center-ness,计算公式如下:

 引入centerness,范围为0~1,离中心点越近,权重越大。因此在一定程度上可以降低离目标中心较远的预测框的得分。拉出一条分支学习centerness,即权重。以此降低误检率。

网络效果:

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
R-CNN系列算法: 优点:检测精度高,能够检测出小目标。 缺点:速度慢,需要多次运行CNN网络,不适用于实时应用场景。 适用场景:对检测精度要求较高的场景,如安防监控等。 YOLO系列算法: 优点:速度快,可以实现实时检测,适用于移动端应用。 缺点:对小目标检测效果不佳,检测精度相对较低。 适用场景:对实时性要求较高的场景,如自动驾驶等。 SSD系列算法: 优点:速度快,可以实现实时检测,对小目标检测效果较好。 缺点:对大目标检测效果不如R-CNN系列算法。 适用场景:对实时性要求较高,同时对小目标检测要求较高的场景。 RetinaNet算法: 优点:在保证检测精度的同时,速度相对较快。 缺点:对于极小目标的检测效果不佳。 适用场景:对检测精度和速度都有一定要求的场景。 CenterNet算法: 优点:在保证检测精度的同时,速度相对较快,对小目标检测效果较好。 缺点:对于大目标的检测效果不如R-CNN系列算法。 适用场景:对检测精度和速度都有一定要求,同时对小目标检测要求较高的场景。 FCOS算法: 优点:对于不同大小的目标都能够进行有效的检测。 缺点:对于密集目标的检测效果不佳。 适用场景:对于目标大小差异较大的场景。 CornerNet算法: 优点:对于遮挡、截断等情况下的目标检测效果较好。 缺点:对于密集目标的检测效果不佳。 适用场景:对于目标遮挡、截断等情况较多的场景。 EfficientDet算法: 优点:在保证检测精度的同时,速度相对较快,同时能够检测出不同大小的目标。 缺点:需要较大的计算资源。 适用场景:对检测精度和速度都有一定要求,同时对目标大小差异较大的场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值