洛谷P2522:[HAOI2011]Problem b(莫比乌斯反演 + 容斥原理)

在这里插入图片描述


∑ x = a b ∑ y = c d [ g c d ( x , y ] = k ] \sum_{x = a}^b\sum_{y = c}^d [gcd(x,y] = k] x=aby=cd[gcd(x,y]=k],下界不是从1开始好像有点麻烦?可以容斥一下:设solve(a,b)函数解决的是: ∑ x = 1 a ∑ y = 1 b [ g c d ( x , y ] = k ] \sum_{x = 1}^a\sum_{y = 1}^b [gcd(x,y] = k] x=1ay=1b[gcd(x,y]=k],答案就是 s o l v e ( b , d ) − s o l v e ( a − 1 , d ) − s o l v e ( b , c − 1 ) + s o l v e ( a − 1 , c − 1 ) solve(b,d) - solve(a - 1,d) - solve(b,c - 1) + solve(a - 1,c - 1) solve(b,d)solve(a1,d)solve(b,c1)+solve(a1,c1)

考虑 s o l v e ( a , b ) solve(a,b) solve(a,b)怎么求: s o l v e ( a , b ) = ∑ x = 1 a ∑ y = 1 b [ g c d ( x , y ] = k ] = ∑ x = 1 ⌊ a k ⌋ ∑ y = 1 ⌊ b k ⌋ [ g c d ( x , y ] = 1 ] = ∑ x = 1 ⌊ a k ⌋ ∑ y = 1 ⌊ b k ⌋ ∑ d ∣ g c d ( x , y ) μ ( d ) solve(a,b) = \sum_{x = 1}^a\sum_{y = 1}^b [gcd(x,y] = k]=\sum_{x = 1}^{\lfloor\frac{a}{k}\rfloor}\sum_{y = 1}^{\lfloor\frac{b}{k}\rfloor} [gcd(x,y] = 1]=\sum_{x = 1}^{\lfloor\frac{a}{k}\rfloor}\sum_{y = 1}^{\lfloor\frac{b}{k}\rfloor}\sum_{d | gcd(x,y)}\mu(d) solve(a,b)=x=1ay=1b[gcd(x,y]=k]=x=1kay=1kb[gcd(x,y]=1]=x=1kay=1kbdgcd(x,y)μ(d)
改变一下枚举项,把d提前: ∑ d = 1 ⌊ a k ⌋ μ ( d ) ∑ x = 1 ⌊ a k ∗ d ⌋ ∑ y = 1 ⌊ b k ∗ d ⌋ = ∑ d = 1 ⌊ a k ⌋ μ ( d ) ∗ ⌊ a k ∗ d ⌋ ∗ ⌊ b k ∗ d ⌋ \sum_{d = 1}^{\lfloor\frac{a}{k}\rfloor}\mu(d)\sum_{x = 1}^{\lfloor\frac{a}{k * d}\rfloor}\sum_{y = 1}^{\lfloor\frac{b}{k * d}\rfloor} = \sum_{d = 1}^{\lfloor\frac{a}{k}\rfloor}\mu(d)*{\lfloor\frac{a}{k * d}\rfloor}*{\lfloor\frac{b}{k * d}\rfloor} d=1kaμ(d)x=1kday=1kdb=d=1kaμ(d)kdakdb
预处理 μ ( x ) \mu(x) μ(x)的前缀和就可以直接分块,在 O ( n ) O(\sqrt n) O(n )时间内完成 s o l v e ( a , b ) solve(a,b) solve(a,b)的运算,总时间复杂度为 O ( n ∗ n ) O(n * \sqrt n) O(nn )


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 10;
typedef long long ll;
int t,a,b,c,d,k;
bool ispri[maxn];
int pri[maxn],mu[maxn];
void sieve(int n) {
	ispri[0] = ispri[1] = true;
	pri[0] = 0;
	mu[1] = 1;
	for(int i = 2; i <= n; i++) {
		if(!ispri[i]) pri[++pri[0]] = i,mu[i] = -1;
		for(int j = 1; j <= pri[0] && i * pri[j] <= n; j++) {
			ispri[i * pri[j]] = true;
			if(i % pri[j] == 0) break;
			mu[i * pri[j]] = -mu[i];
		}
	}
	for(int i = 1; i <= n; i++) 
		mu[i] += mu[i - 1]; 
}
ll solve(int n,int m) {
	if(n > m) swap(n,m);
	n /= k;m /= k;
	ll ans = 0;
	int i,j;
	for(i = 1; i <= n; i = j + 1) {
		j = min(n / (n / i),m / (m / i));
		ans += 1ll * (n / i) * (m / i) * (mu[j] - mu[i - 1]);
	}
	return ans;
}
int main() {
	sieve(50000);
	scanf("%d",&t);
	while(t--) {
		ll res = 0;
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
		res = solve(b,d) - solve(a - 1,d) - solve(b,c - 1) + solve(a - 1,c - 1);
		printf("%lld\n",res);
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值