给你一棵树,定义
d
x
i
d_{xi}
dxi表示 x子树
内和 x
距离为 i
的节点数,对每个x
求使
d
x
i
d_{xi}
dxi最大的 i
,如有多个输出最小的。
有 n log n n \log n nlogn 的 dsu on tree 的做法(说白了就是树链剖分),dsu on tree可以维护的信息更多,深度信息也很容易维护。
这题的数据出到了 1 0 6 10^6 106,如果出题人卡了时间,就要用更优的 长链剖分的做法
长链剖分原理同 dsu on tree,长链剖分的重儿子定义的是最大深度最大的儿子,其余为轻儿子,这样划分出不相交的长短链(轻重链)。重儿子信息直接继承,轻儿子信息暴力合并。每条轻链只会在链顶端被暴力合并依次,而链的长度之和为 n n n ,因此长链剖分的复杂度为 O ( n ) O(n) O(n)
长链剖分一般用来维护与深度相关的信息(代码实现也比较巧妙),通过指针数组的形式来O(1)继承重儿子的信息,详细见代码。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 10;
#define pii pair<int,int>
vector<int> g[maxn];
int n;
int tmp[maxn],*dp[maxn],*id,ans[maxn],len[maxn],son[maxn];
//id 永远指向当前可以分配的第一个位置
void prework(int u,int fa) {
len[u] = 0;son[u] = 0;
for(auto it : g[u]) {
if(it == fa) continue;
prework(it,u);
if(son[u] == 0 || len[it] > len[son[u]])
son[u] = it;
}
len[u] = len[son[u]] + 1;
//len 数组维护的是该点为根节点最长链上的结点个数
//从1开始,id分配空间不会重复覆盖
}
void dfs(int u,int fa) {
dp[u][0] = 1;ans[u] = 0;
if(son[u]) { //长链剖分先处理轻儿子再处理重儿子也可以
//但dsu on tree必须先处理轻儿子,最后处理重儿子,以保留重儿子的信息
dp[son[u]] = dp[u] + 1; //重儿子直接在根节点的数组上合并信息,以此继承重儿子的信息
dfs(son[u],u);
if(dp[u][ans[son[u]] + 1] > dp[u][ans[u]])
ans[u] = ans[son[u]] + 1;
}
for(auto it : g[u]) {
if(it == fa || it == son[u]) continue;
dp[it] = id;id += len[it]; //每次id 需要 += len[it],指向下一个没被覆盖的位置
dfs(it,u);
for(int i = 1; i <= len[it]; i++) { //轻儿子通过暴力合并(深度为 0 - len[it] - 1)
dp[u][i] += dp[it][i - 1];
if(dp[u][i] > dp[u][ans[u]]) {
ans[u] = i;
} else if(dp[u][i] == dp[u][ans[u]]) {
ans[u] = min(ans[u],i);
}
}
}
}
int main() {
scanf("%d",&n);
id = tmp;
for(int i = 1; i < n; i++) {
int x,y;scanf("%d%d",&x,&y);
g[x].push_back(y);
g[y].push_back(x);
}
prework(1,0);dp[1] = id;id += len[1];
dfs(1,0);
for(int i = 1; i <= n; i++) {
printf("%d\n",ans[i]);
}
return 0;
}