P3233 [HNOI2014]世界树(虚树DP , 虚树结构)

题目大意:在一棵树上,每个节点会被最近的一个关键点管辖,如果同时到多个关键点距离都最小,会被标号最小的那个关键点管辖,每次询问 k 个关键点,输出每个关键点的管辖的结点数量。

N300000q300000i=1qmi300000N \leq 300000,q \leq 300000,\sum_{i = 1}^qm_i \leq 300000


题解:参考 https://www.cnblogs.com/zj75211/p/8552270.html

看到 i=1qmi300000\sum_{i = 1}^qm_i \leq300000 就要想到上虚树了。先将关键点提出来建立一棵虚树。这时不在虚树上的点会被省略,这些点通常在虚树的边上(以及结点上)

虚树上的每一条边的上点(指包括不在虚树上的点),最多只会被两个不同的关键点管辖,且一定有交接的边界。如果知道每条边的端点被哪个结点管辖,可以通过倍增的方法(本质就是二分)找到那个边界,这样就可以求得这些点对管辖点的贡献。

首先要处理的是虚树上每一个点被哪一个点管辖,设 bel[x]bel[x] 表示管辖 x 的点。可以通过两遍 dfs 来实现,第一遍得到每个点被其子树中距离最近的关键点管辖,第二遍比较来自父亲和兄弟的关键点,取最近的关键点作为 bel[x]bel[x]

处理完后遍历虚树上的每条边,有两种情况:

1.端点都被同一个点管辖,那么这条边上的点一定也被同一个点管辖,端点上的不在虚树上的结点也会被这个点管辖,这部分贡献可以在遍历的时候处理。

2.端点被不同的点管辖,可以通过倍增找到在这条边上的分界点,同时更新两个关键点的贡献


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 10;
int n,m,k;
int head[maxn],to[maxn << 1],nxt[maxn << 1],sz;
vector<int> h[maxn];
int p[maxn][22],dep[maxn],siz[maxn];				//倍增以及预处理 
int dfn[maxn],cnt,sta[maxn],top,a[maxn],b[maxn];			//虚树的建立 
int bel[maxn],is[maxn];								//计算每个点被哪个点控制 
int ans[maxn];										//统计答案 
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
    while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
    return x*f;
}
void add(int u,int v) {
	to[sz] = v;
	nxt[sz] = head[u];
	head[u] = sz++;
}
void prework(int u,int fa) {
	if(u == 1) dep[u] = 1;
	siz[u] = 1,dfn[u] = ++cnt;
	for(int i = 1; i <= 18; i++)
		p[u][i] = p[p[u][i - 1]][i - 1];
	for(int i = head[u]; i + 1; i = nxt[i]) {
		int it = to[i];
		if(it == fa) continue;
		p[it][0] = u;
		dep[it] = dep[u] + 1;
		prework(it,u);
		siz[u] += siz[it];
	}
}
inline int getlca(int x,int y) {
	if(dep[x] < dep[y]) swap(x,y);
	for(int i = 18; i >= 0; i--) {
		if(dep[p[x][i]] >= dep[y])
			x = p[x][i];
	}
	if(x == y) return x;
	for(int i = 18; i >= 0; i--) {
		if(p[x][i] != p[y][i])
			x = p[x][i],y = p[y][i];
	}
	return p[x][0];
}
int dis(int x,int y) {
	int lca = getlca(x,y);
	return dep[x] + dep[y] - 2 * dep[lca];
}
inline bool cmp(int a,int b) {
	return dfn[a] < dfn[b];
}
inline void insert(int x) {
	int lca = getlca(x,sta[top]);
	while(top > 1 && dfn[sta[top - 1]] >= dfn[lca]) 
		h[sta[top - 1]].push_back(sta[top]),top--;
	if(sta[top] != lca) {
		h[lca].push_back(sta[top]);
		sta[top] = lca;
	}
	sta[++top] = x;
}
void dfs1(int u) {
	ans[u] = bel[u] = 0;									//清空 
	if(is[u]) bel[u] = u;
	for(auto it : h[u]) {
		dfs1(it);
		if(!bel[u]) bel[u] = bel[it];
		else {
			if(dep[bel[it]] < dep[bel[u]]) bel[u] = bel[it];					//以更近的为管辖点 
			else if(dep[bel[it]] == dep[bel[u]] && bel[it] < bel[u]) bel[u] = bel[it];	//如果距离相同,以标号更小的为管辖点 
		}
	}
	is[u] = 0;
}
void dfs2(int u) {
	for(auto it : h[u]) {
		int d1 = dis(bel[u],it),d2 = dis(bel[it],it);
		if(d1 < d2) bel[it] = bel[u];
		else if(d1 == d2 && bel[u] < bel[it]) bel[it] = bel[u];
		dfs2(it);
	}
}
void dp(int u) {
	int sum = siz[u];
	for(auto it : h[u]) {
		dp(it);
		int kp = it;
		for(int i = 18; i >= 0; i--)				//找到离 u 最近的一个点 
			if(dep[p[kp][i]] > dep[u])
				kp = p[kp][i];
		sum -= siz[kp];
		if(bel[u] == bel[it]) {							//都被同一个点管辖 
			ans[bel[u]] += siz[kp] - siz[it];
		} else {
			int tp = it;
			for(int i = 18; i >= 0; i--) {
				if(dep[p[tp][i]] <= dep[u]) continue;
				int d1 = dis(p[tp][i],bel[it]),d2 = dis(p[tp][i],bel[u]);
				if(d1 < d2) tp = p[tp][i];
				else if(d1 == d2 && bel[it] < bel[u])  tp = p[tp][i];
			}
			ans[bel[it]] += siz[tp] - siz[it];
			ans[bel[u]] += siz[kp] - siz[tp];
		}
	}
	ans[bel[u]] += sum;
	h[u].clear();
}
int main() {
	memset(head,-1,sizeof head);
	n = read();
	for(int i = 1,u,v; i < n; i++) {
		u = read(); v = read();
		add(u,v);
		add(v,u);
	}
	prework(1,0);										//预处理 
	m = read();
	while(m--) {
		k = read();
		for(int i = 1; i <= k; i++)
			a[i] = read(),b[i] = a[i],is[a[i]] = 1;
		sort(a + 1,a + k + 1,cmp);
		sta[top = 1] = 1;
		for(int i = a[1] == 1 ? 2 : 1; i <= k; i++)						//建立虚树 
			insert(a[i]);
		for(int i = 1; i < top; i++)
			h[sta[i]].push_back(sta[i + 1]);
		dfs1(1);
		dfs2(1);
		dp(1);
		for(int i = 1; i <= k; i++)
			printf("%d%s",ans[b[i]],i == k ? "\n" : " ");
	}
	return 0;
}
发布了289 篇原创文章 · 获赞 10 · 访问量 9681
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览