bzoj 2959: 长跑(LCT + 并查集 维护边双通)

在这里插入图片描述


对图跑一遍 tarjan,对边双通缩点得到一棵树,答案就是树上两点路径之间的点权和。

因为过程中有加边操作,考虑用 LCT 来维护边双通。

在加边时,若加入这条边没有形成环,则直接加边。若形成了环,则需要在 LCT 上进行暴力缩点。

考虑每个节点维护一个 b e l [ u ] bel[u] bel[u] 表示每个点所在的边双通, LCT 辅助树上只维护边双通的代表点,其它的点不维护到 splay 中(同属一个边双通的其它点并不会立刻完全删除,它们仍可能被某些 splay 的虚边连接,每次暴力修改这些虚边很麻烦,只有 a c c e s s access access 操作连接不同的 splay,考虑在做 a c c e s s access access 操作时用并查集直接跳到它们所在边双通的代表点,省去修改虚边的时间)。

由于整个过程有加边操作, b e l [ u ] bel[u] bel[u] 要用并查集维护,考虑如何维护使得 LCT 中只有边双通的代表点被维护在辅助树中:

如果维护的图是一棵树显然成立,当加一条边 ( x , y ) (x,y) (x,y) 出现新的边双通时,更新 ( x , y ) (x,y) (x,y) 路径上的点的 b e l [ u ] bel[u] bel[u] ,将其指向 x x x(或 y y y),这个过程依赖于暴力修改。修改 x x x 的点权值,设为整个连通分量的权值和。最后将 x x x x x x 的儿子节点断开,断开保证了在整棵辅助树中,同一个分量的点不会出现超过一个,这样保证了子树信息的正确性。

考虑 a c c e s s access access 操作 :只有 a c c e s s access access 操作会修改 LCT 中 s p l a y splay splay 维护的点的集合,由于前面删了点,但没有修改全部虚边,如果 x = f [ x ] x = f[x] x=f[x] 跳可能会将多个相同分量的点维护到同一棵 splay 中,因此要走并查集的边直接找到 f [ x ] f[x] f[x] 对应的 边双通代表点: x = f i n d ( f [ x ] ) x = find(f[x]) x=find(f[x]),因为在辅助树上不存在两个同分量的点,这个操作不会出现死循环。

整个LCT的过程就是对图的所有边双通缩点,将代表点维护到辅助树中,缩点的过程至多进行 n n n 次,复杂度是均摊的,最终复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn),但常数特别大,在判连通性的地方用并查集而不用 findroot 可以减少点常数,因为缩点的关系辅助树上很多虚边没有修改,要注意用并查集查找所属的连通分量代表点。


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 10;
typedef long long ll;
#define pii pair<int,int>
#define fir first
#define sec second
int n,m,res[maxn];
vector<int> g[maxn];
inline int read(){
    int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
    if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
struct LCT {				//用splay维护原森林的连通,用到了splay的操作以及数组 
	int ch[maxn][2];		//ch[u][0] 表示 左二子,ch[u][1] 表示右儿子
	int f[maxn];			//当前节点的父节点 
	int tag[maxn];			//翻转标记,乘标记,加标记 
	int top,sta[maxn],sz[maxn];
	int val[maxn],sum[maxn],v[maxn];	//v维护初始权值, val维护splay上的节点权值,sum维护子树和 
	int bel[maxn],p[maxn];					//belong 维护每个节点所属的连通块,因为过程中有加边,用并查集维护 
	inline bool get(int x) {
    	return ch[findbel(f[x])][1] == x;
	}
	int findbel(int x) {
		return x == bel[x] ? x : bel[x] = findbel(bel[x]);
	}
	int find(int x) {
		return x == p[x] ? x : p[x] = find(p[x]);
	}
	void init() {
		memset(f,0,sizeof f);
		memset(ch,0,sizeof ch);
		memset(tag,0,sizeof tag);
		for (int i = 1; i <= maxn - 10; i++) 
			sz[i] = 1, bel[i] = p[i] = i;
	}
	inline void pushup(int rt) {
		if (rt) {
			sz[rt] = 1; sum[rt] = val[rt];
			int ls = ch[rt][0], rs = ch[rt][1];
			if (ls) {
				sz[rt] += sz[ls];
				sum[rt] += sum[ls];
			}
			if (rs) {
				sz[rt] += sz[rs];
				sum[rt] += sum[rs];
			}
		}
	}
	inline void pushdown(int rt) {
		if (tag[rt]) {
			int ls = ch[rt][0], rs = ch[rt][1];
			if (ls) swap(ch[ls][0],ch[ls][1]), tag[ls] ^= 1;
			if (rs) swap(ch[rs][0],ch[rs][1]), tag[rs] ^= 1;
			tag[rt] = 0;
		}
	}
	inline bool isroot(int x) {
		int fx = findbel(f[x]);
		return (ch[fx][0] != x) && (ch[fx][1] != x);
	}
 	inline void rotate(int x) {							//旋转操作,根据 x 在 f[x] 的哪一侧进行左旋和右旋 
	    int old = findbel(f[x]), oldf = findbel(f[old]);
		int whichx = get(x);
		if(!isroot(old)) ch[oldf][ch[oldf][1] == old] = x;		//如果 old 不是根节点,就要修改 oldf 的子节点信息
	    ch[old][whichx] = ch[x][whichx ^ 1];
	    ch[x][whichx ^ 1] = old;
	    f[ch[old][whichx]] = old;
	    f[old] = x; f[x] = oldf;
		pushup(old); pushup(x); 
	}
	inline void splay(int x) {								//将 x 旋到所在 splay 的根
		top = 0; sta[++top] = x;
		for (int i = x; !isroot(i); i = findbel(f[i])) sta[++top] = findbel(f[i]); //在 splay 中维护 下推标记 
		while(top) pushdown(sta[top--]);
    	for(int fa = findbel(f[x]); !isroot(x); rotate(x), fa = findbel(f[x])) {	//再把x翻上来
        	if(!isroot(fa))										//如果fa非根,且x 和 fa是同一侧,那么先翻转fa,否则先翻转x 
            	rotate((get(x) == get(fa)) ? fa : x);
        }
	}
	inline void access(int x) {					//access操作将x 到 根路径上的边修改为重边 
		int lst = 0;
		while(x > 0) {
			splay(x);
			ch[x][1] = lst;
			pushup(x);
			lst = x; x = findbel(f[x]);
		}
	}
	inline void dfs(int x,int y) {
		bel[x] = y;
		pushdown(x);
		if (ch[x][0]) dfs(ch[x][0],y);
		if (ch[x][1]) dfs(ch[x][1],y);
	}
	inline void move_to_root(int x) {			//将 x 移到 x 所在树的根(不是所在splay的根,所在splay只是一条重链) 
		access(x); splay(x); tag[x] ^= 1; swap(ch[x][0],ch[x][1]);
		//将 x 移到 根之后 x 是深度最低的点,这条重链、这棵splay上所有点的深度颠倒,
		//所有的点的左子树的点应该到右子树,因此要翻转这棵splay的左右子树
	}
	inline void link(int x,int y) {
		move_to_root(x); f[x] = y; splay(x);
	}
	inline void cut(int x,int y) {
		move_to_root(x); access(y); 
		splay(y); ch[y][0] = f[x] = 0;
		pushup(y);
	}
}tree;
int x,y,u,v,op;
int main() {
	n = read(); m = read();
	tree.init();
	for (int i = 1; i <= n; i++) {
		int v = read();
		tree.val[i] = tree.v[i] = tree.sum[i] = v;
	}
	while (m--) {
		op = read(); x = read(); y = read();
		if (op == 1) {
			int tx = tree.findbel(x), ty = tree.findbel(y);
			int fx = tree.find(tx), fy = tree.find(ty);
			if (tx != ty) {				//不在一个边双通里 
				if (fx != fy) {
					tree.link(tx,ty);	// 直接为边双通连边
					tree.p[fx] = fy;
				} else {
					tree.move_to_root(tx);
					tree.access(ty);
					tree.splay(ty);
					tree.val[ty] = tree.sum[ty];
					tree.dfs(ty,ty);
					tree.ch[ty][0] = 0;	//断掉子树,使得每个 splay 中一个连通分量只存在一个点,保证子树和的正确性
										//这个操作保证了多余的点不会出现在辅助树上 
					tree.pushup(ty); 
				}
			}
		} else if (op == 2) {
			int tx = tree.findbel(x);
			tree.splay(tx);
			tree.val[tx] += y - tree.v[x];
			tree.sum[tx] += y - tree.v[x];
			tree.v[x] = y;
		} else {
			int tx = tree.findbel(x), ty = tree.findbel(y);
			if (tree.find(tx) != tree.find(ty)) puts("-1");
			else {
				tree.move_to_root(tx);
				tree.access(ty);
				tree.splay(ty);
				printf("%d\n",tree.sum[ty]);	
			}
		}
	}
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值