新智认知杯:CSL的训练计划(拓扑排序)

27 篇文章 0 订阅

众所周知,CSL 是一个负责的集训队队长。为了让集训队的学弟们训练更加饱和,他根据每个人的能力,提出了 m 个题数要求。假如 CSL 认为 yi 比 xi 强,那么如果 xi 做了 a 题,那 CSL 会要求 yi 需要做至少 a+ri×k,其中 ri 是已知的常数。CSL 现在一共有 s 道题目可以分给大家,因为 CSL 马上就要考OS了,所以他不想再出其他题了,请问正整数 k 最大是多少。

从题目中可以看到一个不等式关系,不难想到可以用差分约束来解,将a = 0, k = 1代入建边,可以求出k最小的情况下每个人在满足所有约束下至少要做的题量,当k增大时,每个人做的题量数会增加为 k 倍 ,所有人做的总题量数sum(d[i])也会增加k倍,已知总题量为s,我们可以直接用除法计算出最大倍数,然后判断一下即可。

这题题目数据特殊,强调是一个不会出现任何环的图,可以用拓扑排序来搞,而spfa被无情的卡掉了。
还是贴出两份代码,一份spfa,一份tpsort
拓扑排序:

#include<bits/stdc++.h>
using namespace std;
#define pii pair<int,int>
const int maxn = 6e5+10;
long long n,m,s;
vector<pii> g[maxn];
long long d[maxn];
int vis[maxn],ind[maxn];
long long bfs(int s){
 	queue<int> pq;
 	memset(d,-1,sizeof(d));
 	d[s] = 0;
 	pq.push(s);
 	while(!pq.empty()){
 	 	int top = pq.front();
  		pq.pop();
  		for(int i = 0;i < g[top].size(); i++){
   			int v = g[top][i].first,w = g[top][i].second;
   			ind[v]--;d[v]=max(d[v],d[top]+w);
   			if(!ind[v]) pq.push(v);
  		}
 	}
 	long long res = 0;
 	for(int i = 1; i <= n; i++) res+=d[i];
 		return res;
}
int main(){
 	scanf("%lld%lld%lld",&n,&m,&s);
 	for(int i = 1; i <= m; i++){
  		int x,y,r;
  		scanf("%d%d%d",&x,&y,&r);
  		g[x].push_back(pii(y,r));
  		ind[y]++;
 	}
 	for(int i = 1; i <= n; i++){				//这个建图方式,也可以用在tp排序,就不用入队所有度数为1的点
  		g[0].push_back(pii(i,0));		//同样的,如果不建这一步,也可以搞spfa,把起点全部入队就行
  		ind[i]++;
 	}
	long long res = bfs(0);
 	if(res==0) puts("-1");
 	else if(res>s) puts("0");
 	else printf("%lld\n",s/res);
} 

贴出一份正确带判环的差分约束代码:(在这题会超时,但可作为板子学习)

#include<bits/stdc++.h>
using namespace std;
#define pii pair<int,int>
const int maxn = 6e5+10;
long long n,m,s;
vector<pii> g[maxn];
long long d[maxn];
int vis[maxn];
bool spfa(int s){
 	vis[s] = 1;
 	for(int i = 0; i < g[s].size(); i++){
  		int v = g[s][i].first,w = g[s][i].second;
  		if(d[v]<d[s]+w){
   			d[v] = d[s] + w;
   			if(vis[v]) return true;
   			if(spfa(v)) return true;
  		}
 	}
 	vis[s] = 0;
 	return false;
}
int main(){
 	scanf("%lld%lld%lld",&n,&m,&s);
 	for(int i = 1; i <= m; i++){
 	 	int x,y,r;
  		scanf("%d%d%d",&x,&y,&r);
  		g[x].push_back(pii(y,r));
 	}
 	memset(d,-1,sizeof(d));d[0]=0;
 	for(int i = 1; i <= n; i++)
  		g[0].push_back(pii(i,0));
 	bool f = spfa(0);long long res = 0;
 	for(int i = 1; i <= n; i++) res+=d[i];
 	//if(f) 有环 
 	if(res==0) puts("-1");
 	else if(res>s) puts("0");
 	else printf("%lld\n",s/res);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值