视觉SLAM十四讲学习笔记:第一讲,第二讲
1.SLAM是什么?
SLAM (Simultaneous Localization and mapping) ,中文译作”同时定位与地图构建“。它是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。
SLAM的目的是解决”定位“与”地图构建“两个问题。
2.SLAM相关的主要书籍
- 《概率机器人》
- 《计算机视觉中的多视图几何》
- 《机器人学中的状态估计》
3.学习SLAM十四讲需要的基础
- 高等数学,线性代数,概率论
- c++语言基础
- Linux基础
4.视觉SLAM
相机可以分为:单目相机(Monocular);双目相机(Stereo);深度相机(RGB-D)
- 单目相机
照片本质上是拍摄某个场景在相机的成像平面上留下的一个投影,它以二维的形式记录了三维世界。这个过程丢掉了场景的一个维度,也就是所谓的深度(或距离),无法通过单张图片计算场景中物体与相机之间的距离。由于图像只是投影,如果真想恢复三维结构,必须改变相机的视角,当相机移动时,物体在图像上的运动就形成了视差&#x