论文阅读:Automatic segmentation of pulmonary lobes using a progressive dense V-network

Automatic segmentation of pulmonary lobes using a progressive dense V-network

使用渐进密集 V 网络自动分割肺叶

2018

摘要

可靠、自动的肺叶分割对肺部疾病的诊断、评估和量化具有重要意义。现有的技术是令人望而生畏的缓慢,不可取地依赖于预先(气道/血管)分割,和/或需要用户交互以获得最佳结果。该工作提出了一种可靠、快速、全自动的基于渐进密集v网(PDV-Net)的肺叶分割方法。该方法使用1个Nvidia Titan XP GPU,平均运行时间为2秒,可以在网络的一次前向通过中分割肺叶,消除了之前任何图集、肺分割或任何后续用户干预的需要。我们使用84例来自LIDC的胸部CT扫描和154例来自LTRC数据集的病理病例来评估我们的模型。我们的模型在LIDC测试集上获得了0.939±0.02的Dice分数,在LTRC测试集上获得了0.950±0.01的Dice分数,显著优于2D u网模型和3D稠密v网模型。我们对来自LOLA11挑战的55个案例进一步评估了我们的模型,获得了平均Dice分数0.935——这是表现最好的团队具有竞争力的表现水平,平均分数0.938。我们广泛的稳健性分析也表明,我们的模型可以可靠地分割来自不同供应商的CT扫描中的健康和病理性肺叶,并且我们的模型对CT扫描重建的配置是健壮的。

关键词:肺叶分割·CT·进行性密集V-Net·裂隙·3D CNN

1、介绍

人的肺分为五个肺叶。对肺有三个叶,即右上叶(原则),右侧中部叶(RML)和右下叶(RLL),由一个小和大裂缝,而左肺有两叶,即左肺上叶(LUL)和左下叶(iii),由一个主要的裂缝。图1为冠状位CT显示的五个肺叶之间有大小裂隙。五个叶中的每一个都有独立的支气管和血管系统,在功能上是独立的。

自动叶分割在临床和技术上都具有重要意义。在临床实践中,医生经常根据受累的肺叶来评估疾病的严重程度和相应的治疗方案。因此,在肺部遇到疾病或病变时,放射科医生可能会通过附近的切片来识别受累叶,特别是在目标切片中裂隙线不清晰时。因此,自动叶分割模型可以通过不断告知放射科医生他们在肺解剖中的位置来缩短CT阅读时间。从技术角度来看,准确的肺叶分割可以改善随后的几个临床任务,包括结节恶性预测(肿瘤主要发生在左上叶或右上叶),自动生成每个结节的肺感知报告,肺部疾病的评估和量化,将搜索范围缩小到最有可能受影响的肺叶。然而,识别裂缝对人类和机器感知都是一个挑战。首先,裂缝通常是不完整的,没有延伸到叶状边界。文献中有几项研究证实裂隙不完全性是非常常见的现象[1]。其次,叶边界的视觉特征可以在病理存在时改变。这种形态变化也可能与裂缝的厚度、位置和形状的变化有关。第三,肺内还存在其他裂隙,可被误解为分隔肺叶的大裂隙或小裂隙(如副裂隙和奇静脉裂隙)。

为了解决精确鲁棒的叶分割问题,我们提出了一种基于渐进密集v网(PDV-net)的全自动可靠的深度学习算法。PDV-net模型取整个CT体积,通过三个密集的特征块,在每个路径上生成逐步改进的分割。我们的模型仅通过一次网络前向,就能在约2秒内准确分割肺叶,消除了任何用户交互或任何预先分割肺、血管或气道的需要,而这些是现有模型设计中常见的假设。

2、相关工作

各种自动和半自动方法已经被提出用于肺叶的分割。尽管方法上存在差异,但现有的方法是相似的,因为它们要么需要事先对气道和血管进行分割(如Bragman等人[2]),要么需要事先定义的地图(如van Rikxoort等人[11]和Ross等人[13])。因此,执行时间慢,生成图谱过程繁琐,对于病理病例性能较低。George等人在[4]的研究中,使用了2D全卷积神经网络和3D随机walker算法来分割叶。然而,他们的方法仍然依赖于随机walker算法,该算法的最优参数可以从一个数据集到另一个数据集。最好有一个不依赖于任何后续启发式方法的端到端解决方案。

在本文中,我们通过不依赖任何气道/血管分割、解剖学知识或地图集的端到端、单通道、基于深度学习的框架,缓解了上述局限性,即依赖于先前的掩模、运行缓慢和缺乏健壮性。

3、方法

我们将dense V-network 【5】和渐进式整体嵌套网络[7]的思想结合起来,得到了一种新的架构:渐进密集v网(PDV-net),一种用于三维体积数据器官分割的端到端解决方案。我们建议的体系结构如图2所示。

在这里插入图片描述

图2:肺叶分割的PDV-net模型。在不同的路径上的分割输出是逐步改进的最终结果。

网络结构
如图所示,首先对网络的输入进行下采样,用24个核跨步=2的5×5×5进行卷积,将两部分连接。

然后将拼接结果传递给3个密集的特征块,每个特征块分别由5、10和10个 densely-wired convolution 组成。密集块的增长率分别设置为4、8和16。密集块中的所有卷积层的核大小为3×3×3,然后进行批归一化和参数校正线性单元(PReLU)。

连续地,通过卷积下采样(downsamp)和跳过连接(skip)在低分辨率和高分辨率通道中利用密集特征块的输出。这使得能够以三种不同的分辨率生成feature map。

第二和第三密集特征块的跳过连接的输出被进一步上采样,以便与第一跳过连接中的输出的大小一致。来自Skip1的特征图被传递到卷积层,随后是Softmax,其输出概率图。在第二条路径中,Skip1和Skip2的特征图被合并(作相加),输出概率图由卷积层产生,然后是Softmax。中得到最终的分割结果。
与密集的v -net不同,PDV -net通过逐步改善之前通路的输出来产生最终输出。为了训练建议的架构,我们选择在渐进架构的每个阶段使用基于骰子的损失函数[10]。

4、实验

数据集
我们使用了3个公共数据集来评估我们的模型。首先,我们从公开可用的LIDC数据集中选择了一个胸部CT子集(354例)进行注释。为了确保数据的可变性,选择了CT扫描,以使具有挑战性的和可见的裂缝在数据集中都能很好地表现出来。地面真相掩模是由多个观察者使用3D切片器以半自动方式生成的。为了减轻地面真相中的偏差,生成的面罩后来由一位专家放射科医生进行了改进和验证。数据集被分成270个训练用例和84个测试用例。利用10%的训练集作为验证集。其次,我们从LTRC数据库中选取了154个CTs。LTRC数据集包括用于病理病例的肺叶面罩,这些病例有明确的COPD或ILD疾病证据,包括肺气肿和纤维化。LTRC案例使我们能够测量我们的模型对肺部病理的健壮性。

Third我们使用了55例肺叶和肺分析(LOLA11)挑战赛[9],并将结果提交给挑战赛组织者进行评估。

Baselines for comparison
我们使用U-Net架构[12]和密集的V-Net进行比较。前者用于最近发表的文章[4]进行肺叶分割,后者是比较的强基线,我们首次将其用于肺叶分割。

实施详情
对于所提出的模型和稠密V-Net,首先对训练量进行归一化,然后使用1个NVIDIA Titan XP GPU将训练量重新缩放到512×512×64。由于该模型占用大量内存,因此采用梯度检查点方法[3]进行内存高效的反向传播。此外,为了正则化的目的,采用了批量空间丢弃[5]。培训是在英特尔®至强®上进行的。CPU E5-2697 v4@2.30 GHz机器。我们使用ADAM优化器[8],学习率为0.01%,权重衰减为10−7。

对于2D U-net实现,我们使用来自所有训练体积的轴向切片训练网络,每个大小为512×512并且归一化为具有介于0和1之间的值。为了避免过度拟合背景类,我们仅使用轴向切片,其中存在至少一个肺叶。我们进一步使用Adam优化器,学习率为5*10−5和10batches图像。

LIDC结果:
表1显示了每个模型的计算得出的总体骰子得分和分区骰子得分。所提出的proposed progressive dense V-net模型总分为0.939±0.020,明显优于2D模型,总分为0.9201±0.0431。如表1所示,3D渐进式密集V-net对每个肺叶相对于密集V-net和U-net均产生始终较大的骰子得分。此外,每个叶的较低标准偏差表明渐进模型更稳健。我们还显示了图3中3个模型之间的定性比较,其中我们的渐进密集V-net模型比2D U-net和密集V-net更好地捕获了肺裂。

在这里插入图片描述

表1:在分割84个LIDC和154个LTRC案例时,将所提出的3D渐进密集V网模型与2D Unet和3D dense V-net模型进行了性能比较。报告了每个叶的平均骰子分数和标准差。

我们进一步使用Bland-Altman图来测量84个LIDC案例的渐进密集V网和地面真实分割之间的一致性(图4)。我们的分割模型与每个情节中的基本事实(肺和LLL是两个最佳协议)之间观察到了很好的一致性。Pearson相关性显示,地面实况中的所有六个体积集合与PDV网络分割中的相应六个体积集合强烈相关,P<0.001。

在这里插入图片描述

之后省略……

5、总结

自动和可靠的肺叶分割是一项具有挑战性的任务,在胸部病变存在的情况下,在没有可见的、完整的肺裂的情况下进行肺叶分割是一项具有挑战性的任务。本文介绍了一种新的三维分割方法,即渐进式密集V-网络,用于从胸部CT扫描中自动、快速、可靠地分割肺叶,而不需要任何预先分割。我们使用3个测试数据集对我们的方法进行了评估:84个来自LIDC的案例,154个来自LTRC的案例,以及55个来自LOLA11的案例。我们的结果表明,所建议的模型在每种情况下的平均运行速度为2秒时,性能优于最先进的模型,或者在最坏的情况下与最先进的模型相当。我们的分析进一步证明了所建议的方法对不同的CT重建配置、CT供应商的选择和肺部病理的存在的稳健性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值