大电网调度控制人机混合增强智能系统框架及关键技术

范世雄1 , 郭建波1 , 马世聪1 , 李立新1 , 王国政2 , 徐浩天1 , 金阳3号 赵则宁1
1 中国电力科学研究院,北京100192
2 北京怀柔实验室, 北京 101400
3 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥 G12 8QQ,英国

抽象的

随着大规模可再生能源并网、新型可控设备的接入以及电网的强化需求,现代电力系统具有不确定性、脆弱性和开放性等典型特征,使得电网的运行与控制面临严峻的安全挑战。以机器学习为代表的人工智能技术在电网调控中的应用受到复杂建模的可靠性、可解释性和泛化能力的限制。基于人机协同的混合增强智能模式是未来人工智能技术在该领域发展的重要方向。本文针对电网调控应用特点,探讨了面向大规模电网调度控制的人机混合增强智能系统的体系架构与关键技术。首先介绍并分析了人机混合增强智能的理论与应用场景,然后提出了人机协同调控系统的物理与功能架构,并讨论了实现人机智能深度融合的关键技术。最后,总结了人机交互技术在电网调节中的研究现状及未来发展,旨在以人机交互、协同的方式有效提高电网调节的智能化水平。

一、引言

电力系统作为最大的人工系统,由于可控设备的接入以及电网规模和结构的不断变化,具有开放性、非线性和复杂性的特点。电网调度控制系统作为电力系统的控制中心,在保证系统安全稳定运行和可靠供电方面发挥着重要作用。目前,电网调度信息系统自动化程度高,集数据采集、决策、控制于一体,是典型的人机交互自动化系统。电网运行人员通常通过人机交互获得状态信息,辅助决策,实现电网的安全稳定运行,而这在很大程度上依赖于人类专家的经验。

随着可再生能源并网发电和大规模长距离输电线路的投入运行,电网规模不断扩大,运行方式复杂,对电力系统运行人员的分析和控制提出了挑战,现行系统还不够完善,在处理复杂任务时仍然依赖于运行人员的经验分析,学习和自适应能力不足。此外,电力系统大幅度重构导致运行特性复杂,运行人员决策能力、心理、生理等因素都会影响运行人员,在电网运行故障、极端天气等复杂工况下,可能因人为失误而发生运行事故。基于数据驱动的人工智能(AI)技术具有较强的感知、预测和决策能力,可有效融入PGDC系统,提高电网运行控制的智能化水平,减轻运行人员的工作压力。

如今,人工智能技术被广泛应用于围棋、图像识别、音频识别等场景,引发了人工智能技术在各个领域的应用热潮。电力领域科研人员对新一代人工智能的应用进行了初步探索性研究,将深度神经网络学习、强化学习等先进的人工智能技术应用于电力系统,取得了宝贵成果。1], [2]。 参考 [3]重点研究了电力系统暂态稳定评估中人工智能的适应性,其中卷积神经网络(CNN)和循环神经网络(RNN)作为主流的深度学习算法被应用于电力系统暂态稳定评估[4], [5]、可再生能源和负荷预测[6], [7]、电网故障诊断与分析[8],因其强大的特征提取和映射能力而被广泛应用于电网应急控制中。此外,Q学习、深度Q网络(DQN)、深度确定性策略梯度(DDPG)等强化学习算法也被应用于电网应急控制中[9]、负载频率控制(LFC)[10]、自动发电控制(AGC)[11] 和自动电压控制 (AVC) [12],用于解决序贯决策问题。但上述文献仅针对PGDC中某些功能的智能,属于专用的端到端智能,根据人对某一任务的理解,选择合适的输入数据和模型,实现智能。

人工智能技术的引入在一定程度上提高了PGDC系统的智能化程度,但在处理动态复杂的人机协同任务时仍存在很大局限性。PGDC系统是典型的人机智能(HMI)系统,其面临的关键问题是如何通过人机交互与协同,融合操作人员与机器的智能,应对不确定性、脆弱性和开放性的挑战。目前,人机混合增强智能(HHI)技术应用于在线智能学习等领域[十三]、医疗保健[14]和机器人控制[15在电力系统应用中,参考[16]对电力系统增强智能分析进行了初步研究,提出了增强智能分析的框架并探讨了其技术难点,但并未考虑人机协同模式下的增强智能。目前,在电力系统综合调度计算机领域,尚无专门的人机协同系统研究。因此,对现代大型电力系统综合调度计算机的HHI系统框架设计进行研究必不可少。要实现这一目标,需要充分发挥操作员和控制系统各自的潜在优势,完成复杂的人机协同任务。

总而言之,本文的主要贡献如下。

1)从物理和功能角度提出了面向大型电力数字化电网的HHI系统框架,建立了电网控制系统、电网数字孪生(PGDT)系统、人工智能系统、系统操作员之间的数据-知识协同交互机制,旨在解决人工智能在电网调控应用中面临的大电网的不确定性、开放性和脆弱性问题。

2)基于上述HHI系统技术框架,提出了一种面向电网实时调控的人机协同调度控制方法,并分析探讨了人机协同的关键技术,实现了人机智能的深度融合,为后续人机协同在电网调控领域的大规模应用提供了有益的参考。据作者所知,这是第一篇系统分析和设计混合增强智能在电网调控应用的论文,有望为人工智能在大规模电网调控中的应用开辟新的技术主题。

二、HHI理论与技术发展

机器智能凭借超强的计算能力,具有感知高维状态、快速决策的能力,而人类智能具有归纳总结和逻辑推理的能力,尤其在理解现实环境、处理不完全信息、复杂时空关系推理等方面具有一定优势。当机器智能应用于对安全性和可靠性要求较高的领域,如自动驾驶、电力系统等,需要将人的监督与交互作为智能系统计算回路中的重要环节,避免因机器智能局限性而导致的风险决策、失控等问题。2017年,中国政府发布的《新一代人工智能发展规划》对国家人工智能发展战略进行了全面部署,将人机混合智能列为人工智能技术规划和部署的重点方向之一。17郑南宁院士将人机交互增强智能分为基于HMC的人机交互增强智能和基于认知计算的增强智能[18提出了人机协同人机交互的基本框架与范式,主要通过分析人工智能系统输出结果的置信度,判断人类是否主动介入调整系统参数,并以此作为反馈回路,提供合理正确的解决方案。参考文献[19]将“人机混合智能”定义为一种新型智能,是跨物种、跨领域的下一代科学实体。

人机交互系统按照发展阶段可分为人机系统、人在环系统和人不在环系统,体现了不同程度的机器智能和人机交互与协作。人机交互模式又可分为人主导(机器跟随)、人机协作和机器主导(人监督)三种,代表了人工智能技术在系统中的智能化程度。合理的人机交互机制可保证人机交互系统在解决复杂任务时达到最佳效率和最优决策结果,并在开放演化环境中实现人机知识协同与优化。

HHI技术尚处于起步阶段,在自动驾驶等应用场景中已取得初步成果[20]和机器人控制[21自动驾驶系统是一种综合性很强的人工智能系统,近年来成为人工智能研究的热点应用领域。自动驾驶系统与驾驶员构成典型的人在环混合增强智能系统,具有很强的互补性。参考文献[22]–[二十五]从驾驶员状态监测、意图识别、驾驶员操作行为建模等方面分析了驾驶员在人机协同控制中的角色和作用,并建立了相应模型。参考[二十六]根据驾驶员操纵车辆的能力描述,定义车辆状态空间的子集,利用车辆模型和可达性分析方法实现自动驾驶向手动驾驶的过渡,并通过实际系统进行验证。机器人广泛应用于工业的各个领域,与人进行更广泛的交互和协作,形成人机交互系统。外骨骼机器人通过传感器获取佩戴者的姿态和相关的物理人机交互信息,理解佩戴者的运动意图,动态规划佩戴者的个性化仿生运动轨迹,进一步提高佩戴的舒适度[二十七]。 参考 [二十八]提出了一种协同装配规划框架,实现分层的人机协同控制,不仅可以生成标称计划,而且可以通过最佳方式结合人与机器人的能力,对不可预见的可能故障事件做出反应和应对。

综上所述,增强型混合智能就是将人的功能或人的认知模型引入人工智能系统,建立一种“增强型混合智能”,这是未来人机系统智能的一个重点发展方向。

三、大电网调控HHI体系技术框架

PGD​​C系统为电网的安全、稳定、经济运行和故障的快速恢复提供了可靠的技术支持和保障。二十九]目前的系统作为运行人员在执行调控任务时眼、手、脑的延伸,在运行人员的感知、分析、决策等方面起着辅助和增强作用,目前的HMC模式属于机器增强运行人员感知的初级阶段。随着电网控制智能化水平的提高,运行人员与控制系统之间的关系已不局限于提醒、预警或相互切换,而是人机并行决策与控制的复杂动态交互关系。基于人机交互的PGDC系统总体设计目标是将运行人员与系统之间从数据层面的交互提升到双向的知识交互,实现人在回路的人机交互,提高电网态势感知和运行决策能力,进一步降低运行人员的工作强度。

本节由电网调节HHI系统的总体思路、物理部署和技术架构设计三部分组成。

总体方法

本文根据系统控制的时间尺度和结构层次,将电网运行控制过程分为内环和外环控制,分别为电网保护自动控制和人机联合决策。内环利用实时运行信息实现电网保护控制的自动执行,与电网形成快速闭环。在上述计算和执行过程中,运行人员的参与程度较低,内环很大程度上依赖于系统的自动化和智能化。外环是运用人工智能技术的重要环节,由运行人员和控制系统共同参与,主要涉及人与机器的交互与协同,实现人机智能融合。本文结合电网调控的要求和特点,构建了基于先进人工智能技术的人机智能融合系统技术框架,充分发挥外环下运行人员与机器的智能融合作用。

B 电网调节中HHI系统的部署

混合增强智能系统的物理架构设计如图所示图 1该系统由AI智能系统、PGDC系统、PGDT系统及操作员输入组成,为满足电力系统安全防护需求,根据系统运行及功能特点,分为不同的信息安全分区。

查看原始图片 下载原图

图 1. 混合增强智能系统的物理架构设计。

目前已将电网模型数据、实时运行数据、管理数据等多源数据汇集到调度控制云平台,结合调度控制云基础设施(CPU资源、存储资源、网络资源),为应用于电网调控领域的AI平台提供数据、算力、算法等服务[三十因此,数据驱动的AI系统与管控云平台部署在同一个信息管理区,便于系统间数据信息交互和模型学习训练。AI系统包括硬件设施、模型算法、AI模型库、知识库等。AI系统部署的管理信息区位于如图所示的生产管控区与互联网区之间。图 1对于人工智能系统而言,采用的开源框架和外部信息可通过互联网与安全接入区进行跨区域安全交互,另外与生产控制区的数据交互需要经过前向和后向的物理隔离设备,可以避免开源信息带来的安全隐患。人工智能系统中训练好的模型库和构建的知识库可直接用于电网状态感知与决策,需要在生产控制区进行镜像部署。人工智能系统利用后向隔离设备将模型库和知识库从管理信息区更新到生产控制区,实现对人工智能模型全生命周期的管理。

PGD​​T 系统是电力系统的数字地图[31], [三十二近年来相关研究已开始开展,目前仍在发展中[33], [三十四如何构建PGDT系统不在本文讨论范围内,它可以模拟电网不同运行模式下的状态,生成异常运行模式下的数据样本,保证AI系统训练样本的均衡性,同时还可以作为与AI系统交互的虚拟演化环境,训练AI模型,生成最优控制策略。PGDT系统作为操作员与AI系统进行分析计算的交互环境,并不直接用于电网控制,因此PGDT系统与AI系统部署在同一管理信息区,便于与AI系统和操作员交互,实现混合HMI的自主协同与优化。

运营商通过人机界面与部署在不同网络安全区域的AI系统、PGDC系统和PGDT系统进行交互和协同,增强对复杂电网的调控能力。

C HHI系统技术架构设计

构建PGDC的HMI系统,需要明确构成HMI系统的各个模块的功能和交互信息,实现PGDC系统、PGDT系统、AI系统和操作员之间的数据和信息流的双向通信。该系统的技术框架如图所示。图 2本节从系统功能组成、人机系统交互协同、基于HMC的电网调控方法等方面介绍HHI电网调控系统总体技术架构设计。

查看原始图片 下载原图

图 2. PGD​​C的HHI系统技术框架。

1 HHI 系统对 PGDC 的作用

HHI系统在现有PGDC系统的架构和功能上进行升级叠加,在智能系统架构上增加了PGDT系统和AI智能系统,系统具体功能组件如下:

1)PGDT系统具有电网拓扑结构、物理模型、历史数据和实时运行数据等信息,基于上述信息可以对电网在不同时间尺度上的各种过程进行模拟和预测,并实现快速计算验证。在HHI系统中,PGDT系统主要承担电网的离线和在线分析、计算和校核功能。常规电网调控中的分析、计算、辅助决策等功能可以集成到PGDT系统中。

PGD​​T系统可支持多模式的电网分析计算,包括实时模式、研究模式、规划模式、训练模式、测试模式等,不同模式下的电网分析计算用于解决PGDC不同场景下的任务。实时模式下,PGDT系统利用实时数据采集、离线数据等对电网实时运行模式状态进行分析计算,提供相应的辅助决策,可实现电网稳态分析、在线安全稳定性分析等应用功能;研究模式根据运行人员对PGDT系统下达的任务,进行电网特性实例分析、电网运行模式计算、故障反演等,可实现电网运行模式计算、安全控制策略生成等应用功能;规划模式用于预测未来电网可再生能源发电量及负荷趋势,并利用预测信息进行未来不同电网场景下电网规划研究,针对存在的安全隐患辅助决策计算,可实现负荷预测、调度计划、安全检查等应用功能。在培训模式下,PGDT系统可以模拟与实际调度中心相同的电力系统静态、动态响应和监管环境,帮助运行人员在模拟调度环境下熟悉和掌握电力系统功能;通过对运行人员知识水平的评估,开展自主训练和反事故演练,进行针对性的培训,提高运行人员在电网不同工况下的操作经验;测试模式可以支持系统运维人员对实际电网中使用的网络模型和高级应用功能进行测试和调试。

2)AI智能系统是HHI系统的核心子系统,主要由AI平台和面向电网调控感知与决策服务的应用组成。AI平台底层由硬件设备和电网数据组成。硬件设备包括计算设施(CPU、GPU、TPU等)、存储资源和网络设备。从数据结构上看,电网数据包括结构化、半结构化和非结构化数据,其中结构化数据存储在关系数据库中,调控文本数据、图片、视频和音频属于半结构化和非结构化数据。基于上述硬件设备和电网数据,AI平台可提供数据预处理、模型与算法、模型训练与评估等功能。在此基础上,构建适用于PGDC的模型库和知识库。此外,为保证AI模型的准确性和泛化能力,建立评价指标对模型性能进行评估,实现模型的更新升级。AI平台为PGDC上层AI应用提供数据和算法基础支撑。

模型库是一套面向电网应用构建的人工智能模型,通过人工智能平台的计算硬件和监管训练数据样本,通过机器学习、深度学习、强化学习等算法,对不同模型结构、不同权重参数的人工智能模型进行训练,并将上述模型整合到模型库进行统一管理,为跨信息安全分区模型共享、智能监管应用提供模型支撑。

知识库是针对电网监管应用构建的各类知识的集合,例如电网特性、因果知识、关联知识等,这些知识可以通过一阶逻辑谓词、产生式规则、RDF(Resource Description Framework)三元组等多种不同的知识表达方式构建知识子集,进而构建专家系统、知识图谱系统等应用于电网监管场景。

2 人机系统交互与协作

人机交互与协同是构建电网调度人机智能的基础,涉及人机、机机交互信息和交互机制。通过建立人机交互机制、明确人机交互信息,实现大规模电力调度系统中人智能与机器智能的双向融合、协同、联合进化。人机、机机交互的内容包括数据层和知识层交互,交互范围包括系统内部交互和与外部环境的交互。交互的具体内容和形式如下。

PGD​​C系统采用数据采集与监控系统(SCADA)实时采集电网运行的稳态、动态、暂态信息、二次设备状态信息、辅助检测信息等数据,将电网的实时、历史数据、模型信息提供给数字化PGDT系统进行离线和在线计算分析,PGDC系统中的安全控制、AGC、AVC等数据采集和高级应用信息通过人机显示界面与运行人员进行交互,提高了运行人员对系统状态的感知能力。

PGD​​T系统接受操作员和AI系统提供的任务信息,执行与电网分析计算相关的任务,例如不平衡样本生成、热稳定计算、暂态稳定分析等任务。PGDT系统可以采用机器人过程自动化(RPA)技术,自动执行上述任务,这个过程就是将电网数据转化为知识。任务执行后得到的结果,也将以数据样本和知识的形式提供给操作员和AI系统,实现人机知识协同和优化演化。

AI系统作为HHI系统的重要组成部分,通过数据和知识与其他系统进行交互,这些数据和知识的来源包括与应用相关的内部和外部数据和知识。系统内部数据由PGDC系统采集和记录的结构化/半结构化数据和现有电网的非结构化文本数据组成,如稳定运行规程、调度操作规程、故障处理预案等;外部数据主要为非电网信息,如来自其他系统和互联网的气象信息、社会信息等。由于电力系统的运行范围局限于典型运行方式范围内,采集的数据不能覆盖所有的运行方式和场景,因此基于数据驱动的AI系统需要通过操作员和AI系统给出的PGDT系统任务生成的模拟数据,解决异常场景中的故障或小样本等问题,实现电网训练数据样本的均衡。

人工智能系统的模型库和知识库可以通过既定的指标(如召回率、准确率、精确率等)或人机交互进行评估,决定是否需要更新和扩充。此外,还可以结合给定的人机任务结果以及外部数据库和知识库得到的数据,对人工智能系统的模型和知识进行升级和强化,保证其在应用过程中的准确性。人工智能系统的输出主要是知识库建立的机器学习模型和相关知识的预测结果,通过人机交互提供给运行人员和PGDC系统执行部分,用于HMC下的电网感知和决策过程。

操作员作为智能机器系统的服务对象和最终价值判定者,是电网安全运行的仲裁者和守护者,操作员与机器智能的交互与配合贯穿了电网状态感知与决策过程。操作员通过PGDC系统的可视化人机交互界面获取与电网运行相关的数据和信息,这些数据和信息经过人脑的感应和演绎,汇总推导为电网感知决策的知识。操作员的生理信息和能力评估将传输给人工智能系统,作为人机混合智能决策的依据。操作员与系统的交互除了传统的键盘、鼠标等输入方式外,还可以通过语音、手势、眼动等方式进行。上述先进的多通道人机交互技术可以实现操作员的状态感知和意图理解,提高电网调控任务中人机协同能力,提升人机一体化水平。

3 基于HMC的电网调节方法

本节基于上述HHI系统技术框架,构建了面向电网实时调节的人机协同调节方法,将调节任务合理分配给操作员和机器执行,通过HAI实现电网的感知和决策控制。图 3给出了基于HMC的电网调度方案,主要包括任务规划和决策执行过程。

查看原始图片 下载原图

图 3. 基于HMC的电网调节方案流程图。

基于HMC的调控方案流程分为以下四个步骤:

步骤1:将当前任务按照任务执行流程分解为多个相互关联的子任务。根据子任务的类型和复杂程度,将分解后的子任务公平分配给操作员和机器共同执行。根据HMC的模式,子任务类型可分为机器执行的子任务和HMC执行的子任务。

步骤2:对于由机器执行的子任务,利用机器学习等算法训练生成的网络模型,生成结果作为下一个子任务的输入。利用机器执行任务的结果,建立相应的模型评估指标,评估训练模型的实际性能,保证模型在不同电网运行场景下的准确性。当评估指标结果高于指定阈值时,将模型输出的结果输入到下一个子任务中;当评估指标结果低于阈值时,则根据子任务的紧急程度,决定是否重新训练模型或是否需要人为干预。

步骤3:采用适当的人机合作模式执行人机合作子任务,并将得到的人机混合决策输入到下一个子任务中。

步骤4:检查当前任务是否完成,若未完成,则执行下一个子任务。根据子任务类型,流程将按照步骤2或步骤3执行。完成后,基于HMC的任务处理流程结束。

基于上述调节流程,电网调节的HHI可通过HMC实现,既提高了机器学习模型的准确性,又保证了HMC过程中人的重要作用。

四、PGDC人机混合增强智能关键技术

电网调节中的人机交互离不开两个重要载体——运行人员和控制系统的互动与协同。本节首先分析了电网调节的人机建模与评估技术,然后详细介绍了复杂任务分配与规划、调节运行数据无偏技术、人机协同智能决策与控制等关键技术。

电网调节的人机建模与评估技术

人机系统的建模与评估是保证人机协作安全、高效的重要前提,人机协作需要兼顾人机各自的特点,进一步充分挖掘人机双方的智能,实现人机系统的混合智能增强。

人类智力测量研究已经比较成熟[三十五],其评价指标划分方法可为机器智能评价提供借鉴。目前,人机系统建模与量化评价研究主要集中在智能驾驶领域[三十六], [三十七智能汽车通过对驾驶员行为和状态(如技能、疲劳、分心等)进行建模和评估,实现系统与驾驶员的协同控制,形成人-车-环境一体化的人机共驾智能闭环系统,在满足驾驶员主观感受的同时,提高车辆操纵性、安全性、经济性、舒适性等性能指标。

PGD​​C人机协同调节过程未充分考虑操作员因素及系统智能水平,缺乏合理的人机协同水平量化评价指标,需要进一步明确;可从构建操作员行为模型、人机能力评估模型等方面开展电网调节的人机建模与评估研究。图 4图为电网调节的人机建模与评估技术框图。

查看原始图片 下载原图

图 4. 电网调节的人机建模与评估技术框图。

电网调度人机建模与评估的主要任务是建立人机行为与能力模型并进行量化评估,为人机任务分配、混合决策提供依据。由于人机是电网调度人机交互的重要参与者,对人机行为与能力进行有效的评估可以很大程度上避免决策控制过程中因人为因素及其能力水平而产生的局限性。

操作员行为建模关注不同操作员操作行为和习惯的差异性,需要基于历史操作行为、指挥语言、眼动等多源数据构建操作员行为量化模型,以有效表征操作员行为。

操作员能力评估模型主要针对操作员的情商、技能水平、当前任务导向风险因子、容忍度等因素建立模型,对操作员的能力进行评估,为电网调度中的HMC提供参考;机器能力模型主要评估系统的智能水平、任务处理能力、泛化能力、可迁移性等,用于衡量智能机器的性能。

针对PGDC中人机智能协同的应用场景,基于以上内容,建立操作员的行为与能力模型和机器的能力模型,能够准确反映人和机器的特征,从而进一步提高HMC中机器的主动性和智能性。

B 复杂任务的优化分配与规划

电网调控的主要任务是实时监控电力系统运行状况,根据当前电网状况,结合运行人员的个人经验和认知水平,确定系统运行方式安排和安全控制措施,保证电力系统安全稳定运行和可靠供电。在电网运行过程中,运行人员面临的调控任务类型不同,可分为简单任务和复杂任务。简单任务可以分配给机器独立完成,而复杂任务通常根据人机分工的基本功能单元和边界条件,分解成相互关联或并行的子任务,再将分解后的子任务分配给运行人员和机器执行。

任务分配是电网调节人机混合系统的关键步骤,任务分配的好坏直接决定了系统执行的效率和成本。在复杂的调节任务环境下,如何科学合理地将各个子任务分配给操作员和智能机器,如何在相互信任的机制下最大限度地发挥人机混合智能是亟待解决的关键挑战。人机任务分配本质上是一个多目标的数学优化问题。目前,人机混合系统任务分配研究主要集中在人与工业机器人的协同装配作业上[三十八]。人与机器之间的任务分配主要考虑操作舒适度、资源利用率、任务复杂度等因素作为目标函数。优化算法(如整数混合规划[三十九]和遗传算法[40])用于实现人机协作的任务分配方案[41],实现了人机任务的合理分配,进一步提高了生产系统效率和产品质量。然而,在电网调控领域,人机任务分配优化的文献和研究较少。参考[四十二]考虑了人为因素对调度操作准确性的影响,保证了班次间负荷均衡,但未考虑机器智能。电网调节人机任务协作过程以操作员为主,机器为辅,缺乏人机调节任务分配的优化。为充分发挥机器的主动性和智能性,进一步降低操作员的工作强度,需要建立电网调节人机任务分配的数学模型。图 5图为电网调控任务分配流程图。

查看原始图片 下载原图

图 5. 电网调控任务分配流程图。

电网运行安全要求高,迫切需要人机系统智能化,实现电网调度任务的分配。人机任务的优化分配可以通过上文中提到的人机能力模型和调度人员行为模型的构建及定量评估分析来实现。假设调度任务集为 𝑇= { 𝑇𝑎 𝑠𝑘1, 𝑇𝑎 𝑠𝑘2, ⋯ , 𝑇𝑎 𝑠𝑘𝑛}电视={电视一个s钾1,电视一个s钾2,⋯,电视一个s钾n}、任务分配的决策变量 𝑇𝑎 𝑠𝑘𝐴𝑖电视一个s钾我一个描述如下:

(1)

𝑇𝑎 𝑠𝑘𝐴𝑖= {10𝑇𝑎 𝑠𝑘𝐴𝑖 分配给机器𝑇𝑎 𝑠𝑘𝐴𝑖 分配给人机电视一个s钾我一个={1电视一个s钾我一个 分配给机器0电视一个s钾我一个 分配给人机

操作员解决任务的能力向量定义为 𝐻= {𝐻1,𝐻2,⋯ ,𝐻𝑛}赫={赫1,赫2,⋯,赫n},其中元素 𝐻𝑖赫我表示操作员解决任务的能力 𝑖我,如风险因素、容忍度等。智能机器解决某项任务的能力向量定义为 𝑀= {𝑀1,𝑀2,⋯ ,𝑀𝑛}米={米1,米2,⋯,米n},其中元素 𝑀𝑖米我表示机器解决任务的能力 𝑖我,如智力水平、处理任务的能力等。HMC的数学模型可以用以下公式来描述

(2)

分钟​( 𝑥 ) =∑𝑗 = 1𝑚𝛼𝑗∑𝑖 = 1𝑛(𝑔𝑗(𝑀𝑖) 𝑇𝑎 𝑠𝑘𝐴𝑖+𝑔″𝑗(𝐻𝑖,𝑀𝑖) ( 1 − 𝑇𝑎 𝑠𝑘𝐴𝑖))英石​​。𝜆⎯⎯≤𝐻𝑖≤𝜆⎯⎯⎯,∀ 𝑖 ∈ 𝑇𝛿⎯⎯≤𝑀𝑖≤𝛿⎯⎯⎯,∀ 𝑖 ∈ 𝑇0 ≤𝛼𝑗≤ 1 ,∀ 𝑖 ∈ 𝑇∑𝑗 = 1𝑚𝛼𝑗= 1 ,∀ 𝑖 ∈ 𝑇⋯分钟f(十)=∑杰=1米α杰∑我=1n(克杰(米我)电视一个s钾我一个+克杰″(赫我,米我)(1−电视一个s钾我一个))s。吨。λ_≤赫我≤λ¯,∀我∈电视δ_≤米我≤δ¯,∀我∈电视0≤α杰≤1,∀我∈电视∑杰=1米α杰=1,∀我∈电视⋯

在哪里 𝑓(𝑥 )f(十)是目标函数, 𝑔𝑗(𝑥 )克杰(十)和 𝑔″𝑗(𝑥 )克杰″(十)是与机器和人机能力相关的子目标函数, 𝑇电视是一组调节任务, 𝛼𝑗α杰是子目标的权重值, 𝜆⎯⎯λ_, 𝜆⎯⎯⎯λ¯和 𝛿⎯⎯δ_, 𝛿⎯⎯⎯δ¯是人类和机器执行子任务的能力值阈值, 𝑚米是多个目标的数量, 𝑛n是子任务的数量 𝑇电视。

上述模型的目标函数可根据人机任务分配的关键因素设定,如操作员参与程度最小、人机系统成本最小、风险系数最小等,并基于上述任务分配模型的目标函数和约束条件,采用智能优化算法实现电网调节任务在人机之间的合理分担。

C 场景驱动的大规模电网调控数据无偏技术

大型电网调度运行区域一般处于典型运行方式附近,存在大量的电网稳态运行数据,但面临电网极端场景及故障样本匮乏的问题[43数据驱动的AI技术的本质是从大量数据中提取特征,通过模型的不断训练和学习做出预测。四十四数据的特征和质量将直接影响人工智能应用的效果,因此,针对大电网复杂、开放、多样的运行场景,人工智能技术的应用需要各类运行场景数据作为输入,以保证模型的准确性和泛化能力。四十五]。

电网运行数据属于非平衡数据集,因此通过非平衡数据集训练生成的模型很难准确预测此类小样本类别的实例,而准确识别小样本类型样本对电网安全运行至关重要。图 5图为电网数据集样本组织与生成示意图。

这些样本主要包括实时电网运行数据、模拟数据以及基于机器学习生成的数据,如图所示图 6电网运行数据作为历史数据,可以通过两种常见的数据处理方法来均衡:欠采样和过采样。欠采样处理方法是通过去除部分大类样本来保证数据集的均衡性,常用的方法有:随机欠采样、Tomek-link [四十六], ENN(编辑最近邻)[四十七]等)。而过采样处理方法增加了小类样本,代表算法为SMOTE(Synthetic Minority Oversampling),该算法通过固定规则算法生成相似数据,无法准确表达电网状态信息。上述采样技术适用于样本不平衡程度较小的场景。

查看原始图片 下载原图

图 6. 电网数据集样本的组织和生成。

相较于交通运输、自动驾驶等领域,电力系统拥有精准的数字孪生仿真系统,目前电网的离线分析和决策均基于仿真结果,因此可以增加小类样本,结合运维人员经验和蒙特卡洛模拟方法,通过仿真生成所需样本,模拟数据样本可作为有益补充,满足模型训练的数据需求。

随着人工智能技术的发展,基于深度学习的样本生成也可以用来扩充网格数据,比如最近流行的生成对抗网络(GAN)及其系列[四十八GAN系列通过交替训练生成器和鉴别器,可以有效学习样本分布并生成新样本,在空间负荷预测中得到应用[49]、可再生能源发电情景[50], [51]、电力系统动态安全评估[52]。

电网实时运行数据的积累需要一定的时间,且缺乏典型极端场景的历史数据,无法保证数据驱动的AI模型的应用性能,因此需要通过上述基于HMC的数据采样和处理方法保证训练样本的均衡性,从而进一步提高训练模型的泛化能力。

D 基于HMC的智能决策与控制技术

现有的人机系统协同决策与控制研究主要集中在自动驾驶领域[53], [54] 和工业机器人 [55], [56]。 参考 [57] 和 [58]分别采用SVM和强化学习智能算法,通过设定其置信度指标实现人机协同决策与控制,但在电网调控领域应用较少。人机决策与控制的关键环节是综合考虑操作员-电网-环境状态,实现HMC模式下决策权的分配与协同,提高人机协同系统整体性能。

根据电网调控安全需求和HMC耦合程度,人机协同智能决策模式可分为人机决策权限切换、人机辅助决策与控制、人机联合决策与控制三种模式,如图所示。图 7以上三种决策控制模式的选择是根据当前电网状况以及人机界面的水平和能力来确定的。图 7(a),决策权在人机之间主动或被动切换。当发生小概率事件或紧急控制时,人机将主动接管系统,将决策权交给人机。当控制系统内部功能出现错误或某项任务过于复杂超出系统功能范围时,控制系统将临时发出请求,完成人机的被动切换。另外,当机器能够独立完成某项任务或人机处于疲劳状态时,机器可以主动或被动地接管决策权。图 7(b)是人机辅助决策与控制,机器通过对运行人员行为的挖掘和分析,将运行人员的经验提炼为知识,进一步优化决策目标,自动为电网运行提供辅助决策,指导和帮助运行人员主动、快速、全面、准确地掌控电网现状和发展趋势。图 7(c)展示了人机联合决策与控制,即操作员和机器协同对电网进行控制。针对电网调节任务,机器利用机器学习或其他优化算法得到期望控制策略,并建立操作员控制策略的预测模型。根据期望控制策略和预测模型,得到HMC下的混合决策,使人机联合控制效果接近期望控制目标,实现对操作员行为的干预修正与控制,提高协同效率的同时减少未知随机人为行为带来的不利影响。

查看原始图片 下载原图

图 7. 电网调控人机协同智能决策模式。(a)人机决策权限切换。(b)人机辅助决策与控制。(c)人机混合决策与控制。

目前,在执行电网调控复杂任务时,无论是人工操作还是机器,都很难单独做出正确决策,决策与控制仍然以“人主机器从”的方式进行。随着机器智能的不断发展,利用评估、优化、机器学习等算法,可以在上述不同的人机协同模式下实现智能决策与控制,进一步提升电网复杂调控的安全控制能力。

五、结论

人机交互是人工智能技术在电网调控应用的重要进展,是解决电网不确定性、脆弱性和开放性问题的一种有前途的智能解决方案。本文分析了人机交互的理论和应用场景,建立了电网调控人机交互系统总体物理架构。在此基础上,从系统功能组成、人机交互与协同等方面研究了电网调控人机交互系统技术架构,深入分析了PGDT系统—AI系统—PGDC系统—操作员各自的功能组成及其之间的交互与协同。并探讨了电网调控人机交互系统的人机建模与评估、复杂任务优化分配、无偏数据组织、人机协同决策与控制等关键技术。

提出的基于人机交互的PGDC系统尚处于初步发展阶段,由于控制任务的多样性和复杂性,HHI的应用面临着人机自主边界定义和人机交互协同的问题。随着机器智能技术的不断提高,上述问题也将不断发生变化。未来基于人机交互的PGDC系统的发展将重点关注以下几个方面:

1)人机系统建模:建立适用于电网调节的HMC模式和人机交互协同(HHI)数学模型,形成基于人机交互与协作范式的人机交互(HAI)基本理论与方法。

2)人机交互与协同:将人与机器之间的数据交互提升到知识交互的层次,实现人机知识的协同与更新。可采用人机双向学习、联合进化的方法,实现混合智能融合协同、持续优化。

3)PGDT系统的实现与应用:需要基于机理和数据融合建模的PGDT系统,加强PGDT系统与算子、AI系统之间数据和知识的交互,应用强化/主动学习的探索机制,实现人机双向的知识增强。

资金

该工作得到了国家重点研发计划(2018AAA0101500)的支持。

参考

[1]

DX Zhang、XQ Han 和 CY Deng,“深度学习与强化学习在智能电网中的研究与实践回顾”,CSEE 电力能源系统学报,第 4 卷,第 3 期,第 362-370 页,2018 年 9 月。

[2]

M. Khodayar、GY Liu、JH Wang 和 ME Khodayar,“电力系统研究中的深度学习:回顾”,CSEE 电力和能源系统杂志,第 7 卷,第 2 期,第 209-220 页,2021 年 3 月。

[3]

范绍祥、李林祥、王志勇、刘晓伟、余永江、郝宝伟,“人工智能技术在电网调度控制中的应用分析与探索”,电网技术,第 44 卷,第 2 期,第 401-411 页,2020 年 2 月。

[4]

JJQ Yu、DJ Hill、AYS Lam、JT Gu 和 VOK Li,“智能时间自适应暂态稳定性评估系统”,IEEE 电力系统学报,第 33 卷,第 1 期,第 1049-1058 页,2018 年 1 月。

[5]

GZ Wang、JB Guo、SC Ma、X. Zhang、QL Guo、SX Fan 和 HT Xu,“基于稀疏 PMU 采样和在线自检功能的数据驱动暂态稳定性评估”,CSEE 电力能源系统学报,第 9 卷,第 3 期,第 910-920 页,2023 年 5 月。

[6]

TY Hu、WC Wu、QL Guo、HB Sun、LB Shi 和 XW Shen,“极短期时空风电功率预测:一种深度学习方法”,CSEE 电力与能源系统杂志,第 6 卷,第 2 期,第 434–443 页,2020 年 6 月。

[7]
SX Fan、XW Liu、WW Ma 和 W. Zhang,“基于多源数据和混合神经网络的超短期母线负荷预测方法”,2020 年 IEEE 第四届能源互联网与能源系统集成会议论文集,2020 年,第 2976-2980 页。
[8]

SY Wang、SX Fan、JW Chen、XW Liu、BW Hao 和 JL Yu,“基于深度学习的计算机可视化电力流故障诊断”,IET 发电、输电和配电,第 12 卷,第 17 期,第 3985-3992 页,2018 年 9 月。

[9]

W. Liu, 张大东, 王小燕, 侯建新, 刘龙平, “基于深度强化学习的发电机组应急跳闸决策策略,”中国电机工程学报, 第 38 卷, 第 1 期, 第 109-119 页, 2018 年 1 月。

[10]

ZM Yan 和 Y. Xu,“数据驱动的随机电力系统负载频率控制:一种具有连续动作搜索的深度强化学习方法”,IEEE 电力系统学报,第 34 卷,第 2 期,第 1653-1656 页,2019 年 3 月。

[11]

JW Li、T. Yu、HX Zhu、FS Li、D. Lin 和 ZH Li,“多智能体深度强化学习用于分段式 AGC 调度”,IEEE Access,第 8 卷,第 158067-158081 页,2020 年 8 月。

[12]

JJ Duan、D. Shi、RS Diao、HF Li、ZW Wang、B. Zhang、DS Bian 和 ZH Yi,“基于深度强化学习的电网运行自主电压控制”,IEEE 电力系统学报,第 35 卷,第 1 期,第 814-817 页,2020 年 1 月。

[13]

Y. Atif、SS Mathew 和 A. Lakas,“构建智能校园以支持无处不在的学习”,《环境智能与人性化计算杂志》,第 6 卷,第 2 期,第 223-238 页,2015 年 4 月。

[14]

B. Rajalingam 和 R. Priya,“基于混合智能的多模态医学图像融合用于疾病识别”,国际工程与技术先进研究趋势杂志 (IJARTET),第 5 卷,第 12 期,第 862-870 页,2018 年 4 月。

[15]

AP Dani、I. Salehi、G. Rotithor、D. Trombetta 和 H. Ravichandar,“人机协作的人机在环机器人控制:协作任务的人为意图估计和安全轨迹跟踪控制”,IEEE 控制系统杂志,第 40 卷,第 6 期,第 29-56 页,2020 年 12 月。

[16]

王 GZ、郭 JB、马 SC、尚 YW、郭 QL、卜 GQ、黄 YH、曾 SC 和周 ZH,“电力系统增强智能分析初步研究”,中国电机工程学报,第 40 卷,第 16 期,第 5079-5088 页,2020 年 8 月。

[17]
中国国务院:新一代人工智能发展规划。世界与重庆,第 2 期,第 5-17 页,2018 年 1 月。
[18]

N.-N. Zheng、Z.-Y. Liu、P.-J. Ren、Y.-Q. Ma、S.-T. Chen、S.-Y. Yu、J.-R. Xue、B.-D. Chen 和 F.-Y. Wang,“混合增强智能:协作与认知”,《信息技术与电子工程前沿》,第 18 卷,第 2 期,第 153-179 页,2017 年 2 月。

[19]

AL Guzman 和 SC Lewis,《人工智能与通信:人机通信研究议程》,《新媒体与社会》,第 22 卷,第 1 期,第 70-86 页,2020 年 1 月。

[20]

AT Nguyen、C. Sentouh 和 JC Popieul,《多系统约束下共享转向控制的驾驶员自动化协作方法:设计与实验》,《IEEE 工业电子学报》,第 64 卷,第 5 期,第 3819-3830 页,2017 年 5 月。

[21]

A. Kolling、P. Walker、N. Chakraborty、K. Sycara 和 M. Lewis,“人类与机器人群体的互动:一项调查”,IEEE 人机系统学报,第 46 卷,第 1 期,第 9-26 页,2016 年 2 月。

[22]

Y. Xing、C. Lv、HJ Wang、DP Cao、E. Velenis 和 FY Wang,“智能车辆驾驶员活动识别:一种深度学习方法”,IEEE 车辆技术学报,第 68 卷,第 6 期,第 5379–5390 页,2019 年 6 月。

[23]

YL Liang、ML Reyes 和 JD Lee,《利用支持向量机实时检测驾驶员认知分心》,《IEEE 智能交通系统学报》,第 8 卷,第 2 期,第 340-350 页,2007 年 6 月。

[24]

GS Yang、YZ Lin 和 P. Bhattacharya,“基于信息融合和动态贝叶斯网络的驾驶员疲劳识别模型”,信息科学,第 180 卷,第 10 期,第 1942-1954 页,2010 年 5 月。

[25]

T. Qu、H. Chen、DP Cao、HY Guo 和 BZ Gao,“基于切换的随机模型预测控制方法用于建模驾驶员转向技能”,IEEE 智能交通系统学报,第 16 卷,第 1 期,第 365-375 页,2015 年 2 月。

[26]

J. Nilsson、P. Falcone 和 J. Vinter,“通过驾驶员可控性估计实现从自动驾驶到手动驾驶的安全过渡”,IEEE 智能交通系统学报,第 16 卷,第 4 期,第 1806-1816 页,2015 年 8 月。

[27]

R. Huang、H. Cheng、J. Qiu Jing 和 JW Zhang,“学习下肢外骨骼耦合协作原语与人机物理交互”,IEEE 自动化科学与工程学报,第 16 卷,第 4 期,第 1566-1574 页,2019 年 10 月。

[28]

L. Johannsmeier 和 S. Haddadin,“用于协作工业装配过程中任务分配的分层人机交互规划框架”,IEEE 机器人与自动化快报,第 2 卷,第 1 期,第 41-48 页,2017 年 1 月。

[29]

P. Kundur,《电力系统稳定性与控制》,纽约:McGraw-Hill,1994 年。

[30]

陶华智、翟明亚、徐红Q、季晓晨、刘建波、徐林燕,“面向电网调度控制应用场景的人工智能平台架构与关键技术”,电网技术,第 44 卷,第 2 期,第 412-419 页,2020 年 2 月。

[31]

MK Zhou、JF Yan 和 DH Feng,“数字孪生框架及其在电网在线分析中的应用”,CSEE 电力能源系统学报,第 5 卷,第 3 期,第 391-398 页,2019 年 9 月。

[32]

F. Tao、H. Zhang、A. Liu 和 AYC Nee,“工业中的数字孪生:最新技术” , IEEE 工业信息学学报,第 15 卷,第 4 期,第 2405-2415 页,2019 年 4 月。

[33]

C. Shen、QN Cao、MS Jia、Y. Chen 和 SW Huang,“数字孪生的概念、特点及在电力系统中的应用前景”,中国电机工程学报,第 42 卷,第 2 期,第 487-498 页,2022 年 1 月。

[34]

H. Mohammadi Moghadam、H. Foroozan、M. Gheisarnejad 和 M.-H. Khooban,“电力系统数字孪生技术新趋势调查”,《智能与模糊系统杂志:工程与技术应用》,第 41 卷,第 2 期,第 3873-3893 页,2021 年 1 月。

[35]

H. Morgan,“加德纳多元智能理论分析”,《罗珀评论》,第 18 卷,第 4 期,第 263-269 页,1996 年 1 月。

[36]

ZQ Shi、H. Chen、T. Qu 和 SY Yu,“基于驾驶员信任的缓解人机冲突的人机协同转向控制”,IEEE 人机系统学报,第 52 卷,第 5 期,第 1036-1048 页,2022 年 10 月。

[37]

J. Wu、JD Zhang、Y. Tian 和 L. Li,“人机协作自动驾驶汽车的新型自适应转向扭矩控制方法”,IEEE 交通电气化学报,第 7 卷,第 4 期,第 2516-2529 页,2021 年 12 月。

[38]

B. Hu 和 J. Chen,“人机协作制造系统的最佳任务分配”,IEEE 机器人与自动化快报,第 2 卷,第 4 期,第 1933-1940 页,2017 年 10 月。

[39]

R. Müller、M. Vette 和 O. Mailahn,“面向过程的人机交互装配过程任务分配”,Procedia CIRP,第 44 卷,第 210-215 页,2016 年 12 月。

[40]

I. Suemitsu、K. Izui、T. Yamada、S. Nishiwaki、A. Noda 和 T. Nagatani,“机器人单元制造系统的布局和任务调度同步优化”,计算机与工业工程,第 102 卷,第 396-407 页,2016 年 12 月。

[41]
J. Liu 和 YP Zhao,“人机协作系统中面向角色的任务分配”,2021 年 IEEE 第四届信息系统与计算机辅助教育国际会议论文集,2021 年,第 243-248 页。
[42]

陈文斌、李晓婷、李 B 和丁建军,“考虑人为风险的电力调度任务分配方法”,《电力系统保护与控制》,第 47 卷,第 21 期,第 156-162 页,2019 年 11 月。

[43]
J. Lan、QL Guo、YZ Zhou 和 HB Sun,“通过数据驱动方法生成大规模收敛潮流样本”,2020 年 IEEE 第四届能源互联网与能源系统集成会议论文集,2020 年,第 722-726 页。
[44]

R. Munro,《人机交互机器学习》,纽约:Manning Publications,2021 年。

[45]

BP Bhattarai、S. Paudyal、YS Luo、M. Mohanpurkar、K. Cheung、R. Tonkoski、R. Hovsapian、KS Myers、R. Zhang、P. Zhao、M. Manic、S. Zhang 和 XP Zhang,“智能电网中的大数据分析:最新技术、挑战、机遇和未来方向”,IET 智能电网,第 2 卷,第 2 期,第 141-154 页。2019 年 6 月。

[46]

I. Tomek,“CNN 的两种修改”,IEEE 系统、人与控制论汇刊,第 SMC-6 卷,第 11 期,第 769-772 页,1976 年 11 月。

[47]

DL Wilson,“使用编辑数据的最近邻规则的渐近性质”,IEEE 系统、人与控制论汇刊,第 SMC-2 卷,第 3 期,第 408-421 页,1972 年 7 月。

[48]
IJ Goodfellow、J. Pouget-Abadie、M. Mirza、B. Xu、D. Warde-Farley、S. Ozair、A. Courville 和 Y. Bengio,“生成对抗网络”,载于第 27 届神经信息处理系统国际会议论文集,2014 年,第 2672-2680 页。
[49]

J. Moon、S. Jung、S. Park 和 E. Hwang,“基于条件表格 GAN 的两阶段数据生成方案,用于短期负荷预测”,IEEE Access,第 8 卷,第 205327-205339 页,2020 年 1 月。

[50]

YZ Chen、YS Wang、D. Kirschen 和 BS Zhang,“使用生成对抗网络的无模型可再生场景生成”,IEEE 电力系统学报,第 33 卷,第 3 期,第 3265-3275 页,2018 年 5 月。

[51]

D. Wei、XQ Chen 和 Q. Yang,《基于可控且可解释的生成对抗网络的数据驱动可再生能源生产场景生成》,《应用能源》,第 308 卷,第 118387 页,2022 年 2 月。

[52]

C. Ren 和 Y. Xu,“基于生成对抗网络的完全数据驱动方法,用于缺失数据下的电力系统动态安全评估”,IEEE 电力系统学报,第 34 卷,第 6 期,第 5044-5052 页,2019 年 11 月。

[53]

M. Marcano、S. Díaz、J. Pérez 和 E. Irigoyen,“自动驾驶汽车共享控制综述:理论与应用”,IEEE 人机系统学报,第 50 卷,第 6 期,第 475-491 页,2020 年 12 月。

[54]

D. Tran、JH Du、WH Sheng、D. Osipychev、YG Sun 和 H. Bai,“用于驾驶辅助的人车协作驾驶框架”,IEEE 智能交通系统学报,第 20 卷,第 9 期,第 3470–3485 页,2019 年 9 月。

[55]

A. Kanazawa、J. Kinugawa 和 K. Kosuge,“基于预测不确定性的协作机器人自适应运动规划以提高人类安全性和工作效率”,IEEE Transactions on Robotics,第 35 卷,第 4 期,第 817-832 页,2019 年 8 月。

[56]

UE Ogenyi、JG Liu、CG Yang、ZJ Ju 和 HH Liu,《人机物理协作:机器人系统、学习方法、协作策略、传感器和执行器》,《IEEE 控制论汇刊》,第 51 卷,第 4 期,第 1888-1901 页,2021 年 4 月。

[57]

DY Wang、F. Qiao、LE Guan、J. Liu 和 C. Ding,“基于置信度的智能车间动态调度人机协作决策方法”,IEEE 机器人与自动化快报,第 7 卷,第 3 期,第 7850-7857 页,2022 年 7 月。

[58]

QQ Zhang、Y. Kang、Y.-B. Zhao、PF Li 和 SY You,“基于强化学习的人机系统顺序决策交易控制”,IEEE 人工智能学报,第 3 卷,第 4 期,第 553-566 页,2022 年 8 月。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值