一、引言
深度学习作为人工智能的核心技术之一,在近年来取得了巨大的发展。随着数据量的不断增长和计算能力的提升,深度学习在图像识别、自然语言处理、语音识别等领域取得了显著的成果。然而,深度学习模型的开发通常需要大量的编程工作和专业知识,这对于许多开发者来说是一个巨大的挑战。因此,深度学习模型快速开发平台的需求应运而生。
深度学习模型快速开发平台可以为开发者提供高效的工具和环境支持,简化模型构建、训练、部署等流程,提高开发效率。这些平台通常集成了各种深度学习框架和算法,提供了可视化的界面和丰富的文档,使得开发者可以更加轻松地进行深度学习模型的开发。
此外,深度学习模型快速开发平台还可以促进人工智能技术的普及和应用。通过降低开发门槛,更多的开发者可以参与到人工智能技术的研究和应用中,推动人工智能技术在各个领域的发展。
综上所述,深度学习模型快速开发平台对于推动深度学习技术的发展和应用具有重要的意义。
二、青云 QingCloud 深度学习平台
(一)产品优势
- 一键部署:即使是有经验的深度学习开发者,构建深度学习开发环境也需大量时间完成复杂配置工作。而 Deep Learning on QingCloud 通过 AppCenter 交付,可一键完成云端部署,并提供应用全生命周期管理能力,包括创建、扩容、监控、健康监测等,助力开发者极速搭建深度学习开发环境。
- 多部署模式:支持使用 GPU 或仅使用 CPU 进行深度学习开发与训练,同时可根据自身需求选择单节点或分布式部署模式。QingCloud 采用专为人工智能计算设计的 AMD / NVIDIA GPU,以直通方式与平台内的节点对接,避免虚拟化带来的损耗,全面释放 GPU 计算能力。虽然 GPU 性能强劲,但费用相对较高,若开发者希望以较低成本进行深度学习开发,可选择仅使用 CPU 资源进行单节点或分布式训练。目前,Tensorflow、PyTorch 及 Keras 支持使用 CPU 进行深度学习应用训练和测试,Caffe 需要重新编译才支持。
- 无缝对接对象存储:集成对象存储命令行工具,通过配置对象存储相关参数,可便捷地从对象存储中获取海量训练数据,完成模型的训练。
- 集成主流框架:集成 Caffe、TensorFlow、PyTorch 和 Keras 等主流深度学习框架和 Jupyter notebook 前端开发环境,助力用户快速部署深度学习开发环境。同时预置 CUDA8.0 和 cuDNN5 驱动,并安装有 numpy、scipy、pandas、matplotlib、nltk、scikit-learn 等众多数据科学工具包,加速深度学习开发与模型训练。
(二)产品类型
- 入门版:搭载第二代英特尔 ® 至强 ® 可扩展处理器,通过 DL Boosting 的 VNNI 技术及 Intel 优化的深度学习框架,在图像分类、图像目标检测、自然语言处理、推荐系统及强化学习等深度学习的性能大幅提升。预装英特尔针对 CPU 优化过的 Caffe、TensorFlow、Keras、PyTorch 最新深度学习框架。适合对性能要求不高的小型项目或初学者。
- 基础版:搭载 AMD GPU,在提供云主机灵活性的同时,提供优秀的性能体验和超高的性价比,在深度学习训练、推理等方面表现出优秀的计算优势。目前支持的深度学习框架有 TensorFlow、Pytorch、Caffe,并将支持 MXNet。预装了 TensorFlow 1.14.0、Keras 2.2.4,PyTorch 1.2.0 最新深度学习框架。适合中等规模的项目和对成本较为敏感的企业。
- 企业版:搭载 NVIDIA GPU,在提供云主机弹性特性的同时,提供优异的性能体验,能够为用户提供超高的计算能力,在深度学习训练、推理等方面表现出强大的计算优势。预装 Caffe、TensorFlow、Keras、PyTorch 最新深度学习框架。适合大型企业的复杂项目和对性能要求极高的场景。
(三)应用场景
在互联网时代,数据量呈爆炸式增长,面对海量的图像、语音和文本数据,训练模型需要极高的计算速度。青云 QingCloud 深度学习平台可以提供优异的计算性能,全力加速深度学习领域人工智能产品的开发。图像、语音和文本等数据源通过上传至海量数据存储服务 QingStor™ 对象存储进行持久化存储,同时也可