天鹰优化器(AO)详解:原理、实现与应用
1 算法概述与生物基础
1.1 算法背景
天鹰优化器(Aquila Optimizer, AO)是Laith Abualigah等人于2021年提出的一种新型元启发式优化算法,发表在SCI二区期刊《Computers & Industrial Engineering》上。该算法模拟了天鹰(Aquila)在自然界的捕猎行为,通过数学建模天鹰的四种典型捕猎策略,实现了高效的优化搜索能力。
天鹰是鹰科中大型猛禽的代表,以其卓越的视力、迅猛的飞行速度和智能的捕猎策略而闻名。天鹰在捕猎过程中展现出的高度适应性和智能性,为优化算法的设计提供了丰富的灵感来源。截至2025年,AO算法在谷歌学术上的引用量已超过1500次,证明了其在优化领域的重要价值和广泛影响力。
1.2 天鹰的生物学特性与捕猎策略
天鹰的捕猎行为体现了其作为顶级捕食者的高度智能和适应性,主要包含四种典型策略:
-
高空翱翔与垂直俯冲:天鹰在高空缓慢盘旋,利用其锐利的视力扫描大面积区域,一旦发现猎物,便会收起翅膀以接近垂直的角度高速俯冲,给猎物致命一击。
-
轮廓飞行与短距滑翔攻击:当发现猎物但距
订阅专栏 解锁全文
836

被折叠的 条评论
为什么被折叠?



