
ORB-SLAM2
文章平均质量分 74
ORB-SLAM2是支持Monocular、Stereo和RGB-D的视觉SLAM系统,是特征点法的巅峰之作,后续IROS、ICRA等会议的vslam paper都是基于ORB-SLAM2进行改进和扩展。本专栏将记录我学习和改进ORB-SLAM的过程。
振华OPPO
命由我作,福自己求;勇于改过,邪念不生;祸福无门,惟人自召;谦虚谨慎,虚己待人。——《了凡四训》
展开
-
ubuntu18.04运行DynaSLAM,实例分割+多视图几何+背景修复
参考链接:https://blog.csdn.net/catpico/article/details/121055337。部署时间:21:20-24:00=2.5h,10:00-11:20=1.5h,总计4h,不包含ORB-SLAM2的环境。运行的速度很慢,因为是在CPU上对每帧先进行实例分割再提取特征点和匹配,并且还会根据前后的关键帧修复背景。总之,在编译mask-rcnn所需的库文件这里出现了很多报错,锻炼分析问题-解决问题的能力吧。文章完成时间:2023-05-14 12:47:45。原创 2024-02-18 14:46:48 · 1688 阅读 · 1 评论 -
PSM-Net根据Stereo图像生成depth图像
PSM-Net根据Stereo图像生成depth图像原创 2024-02-08 19:26:13 · 742 阅读 · 2 评论 -
ubuntu18.04安装gtsam
1、安装相关依赖:sudo apt-get install libeigen3-devsudo apt-get install libtbb-dev2、下载源代码:git clone https://bitbucket.org/gtborg/gtsam.git3、编译安装:cd gtsammkdir build && cd buildcmake ..makesudo make install ......原创 2022-07-30 13:02:06 · 4140 阅读 · 15 评论 -
ubuntu18.04+realsenseD455制作TUM数据集
1、新建文件夹room,在此文件夹下新建目录rgb和depth保存提取出来的深度图和彩色图,同时新建文件rgb.txt和depth.txt保存图片的时间戳和文件名。2、新建Python脚本,代码如下,将其中的rgb、depth、file_handle1、file_handle2、rosbag.Bag修改为自己对应的路径即可。非常重要的K和D矩阵,K从左至右依次为fx、cx、fy、cy,D从左至右依次为k1、k2、p1、p2。查看rosbag的具体信息,比如时长、大小、话题等,其中。原创 2024-01-05 21:37:01 · 1951 阅读 · 0 评论 -
EAO-SLAM运行踩坑解决方案汇总
经历了昨晚2h+早上2.5h+下午2.5h(太菜了),终于成功部署运行了EAO-SLAM!吴艳敏大佬的作品,几何和语义相结合。一定要是下面的命令格式,我因为cd到mono_tum所在目录运行一直卡住,就是因为必须得在根目录中运行。make编译EAO-SLAM源代码时会在60%时候报error停止,但是并没有任何信息告诉你哪里错了。运行EAO-SLAM时,updating model 段错误 (核心已转储)初稿完成于2023-01-05 11:18:48,一直未发布。,然后加上即可编译成功。原创 2023-12-31 17:21:10 · 925 阅读 · 8 评论 -
视觉SLAM数据集(三):KITTI 数据集
Kitti数据集很庞大,包含了双目、光流、场景流、深度、里程计、目标、跟踪、马路、语义、原始数据等大类别,每个大类别又包含很多的细分的序列。类别详情官网解释的很清楚。比如我想下载自动驾驶的里程计数据集(灰度图,22GB),直接点击下载链接即可,如果你的下载速度很慢,建议直接找百度网盘链接下载。官网地址:https://www.cvlibs.net/datasets/kitti/eval_odometry.php。可以在双目程序中运行数据集得到相机的轨迹和关键帧的轨迹,然后使用评估工具对各项指标进行评估。原创 2023-10-24 12:24:41 · 3207 阅读 · 0 评论 -
Ubuntu部署运行ORB-SLAM2
ORB-SLAM2是特征点法的视觉SLAM集大成者,不夸张地说是必学代码。博主已经多次部署运行与ORB-SLAM2相关的代码,所以对环境和依赖很熟悉,对整个系统也是学习了几个月,一行行代码理解。本次在工控机上部署记录下完整的流程。原创 2023-10-01 07:00:00 · 587 阅读 · 0 评论 -
视觉SLAM数据集(二):EuRoC DataSet
本文展示了在微型飞行器(MAV)上收集的视觉惯性数据集。数据集包含立体图像、同步 IMU 测量以及精确的运动和结构地面实况。这些数据集发表于:M. Burri,J. Nikolic,P. Gohl,T. Schneider,J. Rehder,S. Omari,M. Achtelik和R. Siegwart,EuRoC微型飞行器数据集,国际机器人研究杂志,DOI:10.1177 / 0278364915620033,2016年初。原创 2023-06-01 11:34:08 · 3996 阅读 · 3 评论 -
RGB-D基准测试工具:绝对轨迹误差 (ATE)、相对位姿误差 (RPE)和从图像生成点云
在估计RGB-D相机轨迹并将其保存到文件中后,我们需要通过将其与地面事实进行比较来评估估计轨迹中的误差。有不同的错误指标。两种突出的方法是绝对轨迹误差(ATE)和相对姿势误差(RPE)。ATE非常适合测量可视 SLAM 系统的性能。相比之下,RPE非常适合测量视觉里程计系统的漂移,例如每秒漂移。原创 2023-05-03 16:26:22 · 2324 阅读 · 6 评论 -
ubuntu18.04部署DXSLAM,CNN+VSLAM,CPU实时运行
本文表明,使用深度卷积神经网络(CNN)进行的特征提取可以无缝地整合到现代SLAM框架中。所提出的SLAM系统利用最先进的CNN来检测每个图像帧中的关键点,并且不仅提供关键点描述符,而且提供整个图像的全局描述符。然后,不同的 SLAM 模块使用这些本地和全局功能,与使用手工制作的功能相比,对环境变化和视点变化的鲁棒性要高得多。我们还使用词袋(BoW)方法训练局部特征的视觉词汇。基于局部特征、全局特征和词汇表,构建了一种高可靠的闭环检测方法。实验结果表明,所提模块均显著优于基线。原创 2023-01-10 15:00:00 · 4010 阅读 · 64 评论 -
使用evo工具评估ORB_SLAM2在TUM数据集上的运行轨迹
当使用RGB-D模式时,需要用到depth和rgb两个文件夹里的图片,而且需要associate.py脚本文件关联 RGB 图像和深度图像。在这步中我们需要使用RGB 图像和深度图像的关联文件,ORB-SLAM2的作者在examples/RGB-D/associations/路径下提供了某些序列的关联文件。sse:和方差/误差平方和;和绝对轨迹误差参数相同,使用相机轨迹的原因在于它包含了关键帧轨迹,反映的是全局一致的地图。xyz坐标系的视图,显示各个时间下相机的x、y、z坐标,纵轴单位为m,横轴单位为s。原创 2023-04-17 12:39:24 · 7585 阅读 · 6 评论 -
视觉SLAM数据集(一):TUM DataSet
如果你是第一次做实验,建议下载xyz的数据集,因为它的动作相对很小,只包含桌面上的一小部分。一旦成功测试,就可以试试desk数据集,它包含四张桌子和几个闭环。原创 2023-02-24 20:55:11 · 9891 阅读 · 21 评论