
深度学习
文章平均质量分 80
Attention Is All You Need.
振华OPPO
命由我作,福自己求;勇于改过,邪念不生;祸福无门,惟人自召;谦虚谨慎,虚己待人。——《了凡四训》
展开
-
Python使用pip同时安装多个依赖库
在使用pip安装 Python包时,可以同时指定多个包名,这样就能一次性安装多个包,下面介绍几种不同场景下同时安装两个包的方法。原创 2025-03-11 15:21:49 · 1178 阅读 · 0 评论 -
知识图谱:人工智能的“数字大脑”与未来基石
知识图谱不仅是人工智能的“基础设施”,更是连接数据与智慧的桥梁。从搜索引擎到产业大脑,其应用正在重塑人类与信息交互的方式。随着技术迭代与生态完善,知识图谱有望成为驱动社会智能化升级的核心引擎。我强烈推荐4本可以改变命运的经典著作《寿康宝鉴》在线阅读白话文《欲海回狂》在线阅读白话文《阴律无情》在线阅读白话文《了凡四训》在线阅读白话文。原创 2025-03-08 21:02:07 · 666 阅读 · 0 评论 -
Stacking技术详解:如何用“模型议会”让AI更聪明?
邀请放射科AI(CNN)、病历分析AI(RNN)、基因检测AI(Transformer)三位专家。(可视化显示:ResNet关注纹理,Transformer关注整体轮廓):即使某位专家误判(如CNN把猫认成狗),集体智慧仍能准确诊断!:CNN(局部特征) + Transformer(全局依赖):相比单模型,F1-score从0.812提升至0.847!把基模型预测概率与原图特征(如HSV直方图)拼接。(类似"专家委员会 → 院长会诊"的层级结构):对同一图片,不同模型关注的区域不同。原创 2025-03-06 16:10:14 · 834 阅读 · 0 评论 -
知识蒸馏:小模型的逆袭之路
知识蒸馏就像是深度学习领域的一座桥梁,连接着大型模型的强大性能和小型模型的高效实用。它通过独特的方式,让小模型能够从大模型那里获取知识,实现自身的提升。在未来,随着技术的不断发展,知识蒸馏有望在更多领域发挥更大的作用,为我们的生活带来更多的便利和惊喜。无论是在智能设备的广泛应用,还是在复杂任务的高效处理中,知识蒸馏都将持续闪耀,助力深度学习技术迈向新的高度。原创 2025-03-03 11:27:04 · 625 阅读 · 0 评论 -
深度探索推理新境界:DeepSeek-R1如何用“自学”让AI更聪明?
今天我们要聊从1月初火到现在的AI模型——DeepSeek-R1。它就像一个“自学成材的学霸”,不用老师手把手教,就能在数学、编程、逻辑推理等领域大显身手!将深度求索发表的R1论文吸收后,发现它不仅揭秘了它的成长秘籍,还开源了多个“迷你版学霸”,让普通电脑也能用上顶尖AI能力。快跟我一起探索吧!原创 2025-03-01 21:20:11 · 1259 阅读 · 0 评论 -
Windows安装GPU版本Pytorch最安全快速便捷的方法
讲解了如何安装Pytorch,但是因为网络问题很难下载和安装成功,因此整理下这些年总结的离线安装方案,帮助大家更快安装好深度学习环境。文中还需要具备和的基础知识。原创 2025-02-26 08:00:00 · 1589 阅读 · 0 评论 -
Anaconda环境打包秘籍:轻松打包,一键加载
在Anaconda中,打包环境通常有两种主要方法:使用命令导出环境配置,或者使用conda-pack工具打包整个虚拟环境。原创 2025-02-24 11:11:24 · 1474 阅读 · 0 评论 -
大模型时代的知识增强革命:深度解析RAG技术
RAG从外部知识库中获取相关信息,然后利用生成模型对这些信息进行加工和合成,生成更准确、相关的内容或答案。它结合了传统的检索机制和生成模型,从而弥补了生成模型知识。原创 2025-02-15 11:03:18 · 828 阅读 · 0 评论 -
5分钟教你本地部署刷爆全网的DeepSeek-R1大模型
AI再强,也只是个工具,程序员才是掌控工具的大佬。所以,程序员的未来,不是淘汰,而是起飞。程序员要做的就是接受AI,学习AI,使用AI,成为新时代的复合型人才。能够掌握AI的人,才是未来的赢家。站在时代的分水岭上,有人看到的是深渊,有人看到的却是满天星群。机会,永远留给有准备的人的。在AI时代,学会AI、善用AI就是你最好的准备!原创 2025-02-11 10:55:09 · 1832 阅读 · 2 评论 -
Pytorch快速入门
这将在我们的数据集周围包装一个可迭代对象,并支持自动批处理、采样、洗牌和多进程数据加载。在这里,我们定义了一个大小为 64 的批,即 dataloader 可迭代对象中的每个元素将返回 64 个特征和标签的批。PyTorch 有两个 用于处理数据的原语:torch.utils.data.DataLoader 和 torch.utils.data.Dataset。在每个时期,模型都会学习参数以做出更好的预测。在单个训练循环中,模型对训练数据集(分批馈送)进行预测,并将预测误差反向传播以调整模型的参数。原创 2024-10-13 11:13:04 · 2832 阅读 · 0 评论 -
【yolov5】pytorch模型导出为onnx模型
博主想拿官网的yolov5训练好pt模型,然后转换成rknn模型,然后在瑞芯微开发板上调用模型检测。1、首先部署好yolov5的环境,保证可以运行detect.py进行检测,将自己训练好的pt模型放到weights目录下,我这里命名是best.pt。3、输入下面命令导出模型(后面的weights、img和batch参数可以不加,设置下默认参数即可)自带的预训练模型是预测80类CoCo数据集的yolov5s改进结构,下面就带大家一起转换模型!可以看到转换后的结构比较乱,有些结点其实可以跳过,减小模型。原创 2022-10-21 06:30:00 · 18500 阅读 · 13 评论 -
pytorch模型转换为rknn模型,使用npu推理
然后在rknn文件夹下,找到onnx2rknn.py、dataset.txt和coco2017数据集,将它们复制到新的文件夹中,作为rknn模型转换目录。🎼量化精度分析:该功能将给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,以便于分析量化误差是如何出现的,为提高量化模型的精度提供思路。🏋性能和内存评估:将 RKNN 模型分发到指定 NPU 设备上运行,以评估模型在实际设备上运行时的性能和内存占用情况。pt模型的输入图像的通道一定要和转换时的图像通道数相同,对于RGB图像肯定是3通道。原创 2022-10-24 12:36:19 · 8138 阅读 · 45 评论 -
Graphviz安装配置教程(图文详解)
全网最详细的Graphviz安装配置教程!原创 2021-12-02 23:16:46 · 93472 阅读 · 24 评论 -
如何使用labelme标注语义分割数据集,最详细的深度学习打标签教程
最详细的深度学习打标签教程原创 2022-05-26 23:13:24 · 9771 阅读 · 2 评论 -
如何使用labelImg标注数据集,最详细的深度学习标签教程
一种利用现成的数据集:比如mnist手写体、ImageNet、COCO、PASCAL VOC、OpenImage等数据集;还有就是我们可以手动标注的数据集。6、Open Dir打开刚刚的test文件夹,Change Save Dir更换保存路径为result文件夹。7、点击Create RectBox,然后出现十字架,进行拖动框住标注区域。5、这里我打开F盘中的test文件夹,里面有三张待标注的图像。8、然后输入标签,点击OK,再点击左侧的Save保存标签。回车,安装标签库,我这里是已经安装好了的。原创 2022-05-13 18:07:53 · 23174 阅读 · 6 评论 -
Python安装Pytorch教程(图文详解)
最近人工智能等多门课需要复现论文,近两年的论文很多都是基于Pytorch环境做的实验,所以,这里总结一下Pytorch的安装教程,做好完成安装。原创 2021-11-18 11:49:17 · 214028 阅读 · 142 评论 -
下载和安装CUDA和Cudnn(图文详解)
Pytorch环境需要用到CUDA,所以我们要安装CUDA的驱动。这里我安装的是CUDA10.0,对应的Cudnn是7.4.1。原创 2021-11-24 08:30:00 · 18741 阅读 · 3 评论 -
Anaconda创建和删除环境
简单来说,激活环境其实就是进入文件夹py37,退出环境就是退出文件夹py37,因为所有的环境都是在anaconda目录下的envs目录。但这样删除环境不是很彻底,还会有文件无法删除,导致这个文件夹还在,所以我们到安装anaconda的文件夹下找到envs文件夹,然后删除py37这个文件夹。删除某个环境时,一定不能在该环境下删除,一般都是base环境(anaconda默认的环境)下删除我们创建过的环境。这时候,我们输入y确定,然后刚刚创建的py37就被移除了。系统还告诉了我们激活环境和退出环境的命令。原创 2021-11-20 10:37:49 · 39521 阅读 · 6 评论 -
anaconda安装配置教程
Anaconda是一个开源的Python发行版本,包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等。其中Conda是一个开源的包、环境管理器,可以用于在同一个机器(电脑)上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。可以看到前面由base变成py37了,这就表示我们进入了该环境,大家可以直接把环境理解成文件夹。输入y,然后回车进行下载,下载和安装完会提示done,像这样就是安装好了。去掉两个框中的勾,然后Finish完成,至此安装成功。原创 2021-11-17 17:50:33 · 65560 阅读 · 8 评论