目录
3.2 Application of guided stereo应用
https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/105336793
摘要
问题:立体匹配深度网络在处理新环境时,准确性会显著下降。
因此,本文提出Guided Stereo Matching,一种新的范例,利用了少量从外部源检索到的稀疏但可靠的深度测量值,从而改善了这一弱点。我们的方法所需要的额外稀疏线索可以通过任何策略(如激光雷达)获得,并用于增强与相应的视差假设相关的特征。我们的公式是通用的和完全可微的,因此能够利用预先训练的深度立体声网络中额外的稀疏输入,以及从头开始训练一个新的实例。在三个标准数据集和两个最先进的深度架构上进行的广泛实验表明,即使有一小组稀疏输入线索,i)提出的范式也能够对预先训练的网络进行显著的改进。此外,ii)从头开始的训练显著提高了对域位移的准确性和鲁棒性。最后,它是iii)是适合和有效的,即使是传统的立体算法,如SGM。
1.介绍
在本文中,我们建议利用一组稀疏深度测量来利用深度立体网络在任何环境中获得密集和准确的估计。
目标:特别是,给定一个深度网络和一个小集合(例如,不到整个图像点的5%):我们可以在不需要再训练的情况下提高网络的整体精度吗?我们可以减少域移位问题吗?我们从零开始训练网络以利用稀疏测量值,是否能得到更好的结果?
本文的三个主张:
1.给定稀疏(<5%密度)深度输入,将我们的方法应用于预训练模型总是提高其精度,无论是当网络只在合成数据上训练,还是在目标环境上进行微调。
2.从稀疏输入引导的网络从零开始训练显著提高了其泛化能力,显著减少了域位移(例如,当从合成图像移动到真实图像时

最低0.47元/天 解锁文章

507

被折叠的 条评论
为什么被折叠?



