立体匹配
文章平均质量分 86
soleillllling
这个作者很懒,什么都没留下…
展开
-
2021_Exploiting Semantic and Boundary Information for Stereo Matching
1.贡献:1.我们提出了一个用于联合语义分割、边界检测和立体匹配的神经网络,其中语义和边界信息一致性成为视差估计的积极指导。2.我们设计了一种使用注意力机制构建混合成本量的方法,该方法分别结合了三种不同的成本量,它们是语义成本量、边界成本量和空间特征成本量。4.4.1 Basic Network Architecture包括语义分割、边界检测和立体匹配三个分支。 以上三个分支共享特征提取模块,减少了计算参数,从而提高了计算速度。首先,立体图像对流入特征提取块,如图原创 2021-10-14 19:04:35 · 1285 阅读 · 0 评论 -
2019_AnyNet
Stereo matching paper notes (6): AnyNet Spade Spade1.UnetU-Net 架构以各种分辨率(1/16、1/8、1/4)计算特征图,这些特征图用作阶段 1-3 的输入,仅在需要时计算。 原始输入图像通过最大池化或跨步卷积进行下采样,然后用卷积滤波器进行处理。 较低分辨率的特征图捕获全局上下文,而较高分辨率的特征图捕获局部细节。 在 1/8 和 1/4 的尺度上,最终的卷积层结合了先前计算的低尺度特征。2.Disparity N..原创 2021-10-12 17:01:34 · 998 阅读 · 1 评论 -
【读】SGM理解
目录立体匹配的四个步骤:1.匹配代价计算-Census2.代价聚合-路径3.视差计算-WTA4.视差优化学习于:Ethan Li 李迎松-立体匹配专栏学习了大佬的,再理解的。由于一直没整明白代价聚合这块,所以放一起方便理解。立体匹配的四个步骤:1.匹配代价计算2.代价聚合3.视差计算4.视差优化1.匹配代价计算-Census1.左右图像的对应视差为d的像素,其局部窗口内的像素值与中心像素比较大小(大于取1,小于或等于取0),得到两个比特串,2.原创 2021-06-07 17:11:14 · 373 阅读 · 0 评论 -
【读论文】Hierarchical Deep Stereo Matching on High-resolution Images
摘要提出问题:探索了高分辨率图像上的实时立体匹配问题。由于内存限制或速度限制,许多最先进的(SOTA)方法很难处理高分辨率的图像。方法原创 2021-06-04 21:35:09 · 1092 阅读 · 2 评论 -
【菜鸟读论文】2019_Guided Stereo Matching
目录摘要1.介绍2.相关工作3.Guided Stereo Matching3.1 Feature enhancement特征增强3.2 Application of guided stereo应用5.结论https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/105336793摘要问题:立体匹配深度网络在处理新环境时,准确性会显著下降。因此,本文提出Guided Stereo Matching,一种新的.原创 2021-05-25 16:47:56 · 932 阅读 · 4 评论 -
【菜鸟学习论文】2018_Zoom and Learn:Generalizing Deep Stereo Matching to Novel Domains
https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/105336793摘要问题:很难推广到别的领域。在目标域中收集立体对的精确地面真实差异。提出一种自适应方法去训练CNN,利用合成训练数据集(有地面真实差异)和目标域立体对(没有地面真实差异)。通过将不同领域的真实立体对输入到用合成数据预先训练的立体模型,我们看到:i)预先训练的模型不能很好地推广到新领域,在边界和非法区域产生伪影;然而,ii)输入上采样的立体对会导致具有额外细节的视差原创 2021-05-24 17:17:31 · 219 阅读 · 0 评论 -
【菜鸟学习论文】2018_EdgeStereo
https://zhuanlan.zhihu.com/p/53055789目录https://zhuanlan.zhihu.com/p/53055789摘要1.介绍3 方法3.2Context Pyramid3.3 Residual Pyramid3.4 Cooperation of Edge Cues3.5多阶段培训策略与目标功能摘要问题:然而,现有的方法,即使是复杂的级联结构,也可能在非纹理、边界和微小细节的区域失效。针对这些问题,我们提出了一个由主干..原创 2021-05-22 16:24:51 · 271 阅读 · 0 评论 -
【菜鸟学习论文】2019_Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching
AcfNet阅读之后懂大半。AcfNetOverview这部分很熟悉了,略过。soft argmin整个过程是可通过监督地面真相的视差来区分的,而成本量是通过提供视差插值的权重来间接监督的。然而,监督是不确定,可能有无限可能的权值集来实现正确的插值结果。成本量的灵活性容易过拟合,因为许多不正确学习的成本量可能插入接近地面真相的差异(即较小的训练损失)。单峰分布成本体积的定义是为了反映候选匹配像素对之间的相似性,其中真正的匹配对应该具有最低的成本(即最高的相似度),并且成本..原创 2021-05-21 15:20:55 · 347 阅读 · 0 评论 -
【菜鸟学习论文】2020_Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching
目录摘要2 相关工作立体匹配:3 方法3.1 构建成本体积立体匹配中的三维成本体积3.2级联成本量假设的范围假设的平面时间间隔假设平面数空间分辨率扭曲操作3.3 特征金字塔3.4 损失函数4. 实验4.2 立体匹配Implementation摘要问题:构建三维成本体积来规范和回归深度或视差,会受到高分辨率输出的限制,随着体积分辨率的增加,内存和时间成本会随着体积分辨率的增加而增加。方案:首先,提出的成本体积是建立在一个...原创 2021-05-19 15:37:31 · 1315 阅读 · 0 评论 -
【菜鸟学习论文】2018_Pyramid Stereo Matching Network
再次看了下,主要看了成本体积的构建。目录摘要1.介绍2.相关工作(自己去看)3. Pyramid Stereo Matching Network3.1 网络结构3.2Spatial Pyramid Pooling Module3.3 Cost Volume3.4 3D CNN3.5 视差回归3.6 Loss4.实验4.1 细节摘要问题:目前的架构依赖patch-based Siamese networks,缺乏利用上下文信息取找到ill-pose.原创 2021-05-17 16:42:43 · 466 阅读 · 1 评论 -
【菜鸟学习论文】2020_Wasserstein Distances for Stereo Disparity Estimation
目录摘要:1.介绍2.背景3.视差估计3.1 Continuous disparity network (CDN)3.2 Learning with Wasserstein distances【https://zhuanlan.zhihu.com/p/58506295】3.3 Extension: learning with multi-modal ground truths4. 实验4.2 实施的详细信息Stereo disparity.The offse.原创 2021-05-15 16:44:56 · 799 阅读 · 0 评论 -
【菜鸟学习论文】Domain-invariant Stereo Matching Networks
摘要:在本文中,我们的目标是设计一个领域不变的立体匹配网络(DSMNet),它可以很好地推广到看不见的场景中。为了实现这一目标,我们提出了:i)一种新的“领域标准化”方法,规范化学习表示的分布,使它们对领域的差异是不变,ii)一个端到端可训练的结构保留图的过滤器来提取鲁棒的结构和几何表示,可以进一步增强领域不变推广。1.介绍然而,最先进的立体声匹配网络(监督[5,19,63]和无监督[51,68])不能在没有微调或适应的情况下很好地推广到不可见的数据。它们的困难在于很大的领域差异(如原创 2021-05-14 15:42:13 · 417 阅读 · 3 评论 -
【菜鸟学习论文】CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching
目录摘要:1.介绍2.相关工作2.1基于成本容量的深度立体声匹配2.2基于多规模成本体积的深度立体声匹配2.3 鲁棒的立体匹配3.我们的方法3.1 Overview3.2 融合成本体积构建成本体积:成本体积融合:3.3 级联成本体积4.实验5.总结摘要:在本文中,我们提出了一种基于级联融合成本体积的CFNet网络,以提高立体匹配网络的鲁棒性。首先,我们提出了一个融合的成本体积表示来处理大的域差异。通过融合多个低分辨率的密集成本体积来...原创 2021-05-13 15:44:37 · 1778 阅读 · 0 评论 -
【菜鸟学习论文】AANet:Adaptive Aggregation Network for Efficient Stereo Matching
目录摘要:1.介绍3.方法3.1 Adaptive ISA3.2 Adaptive CSA3.3 AANetwork3.4 Disparity Regression3.5 损失函数5.结论摘要:在本文中,我们的目标是完全取代常用的三维卷积,以实现快速推理速度,同时保持可比的精度。为此,我们首先提出了一种基于稀疏点的尺度内成本聚合方法,以缓解著名的边缘增肥问题。进一步,我们近似传统的跨尺度成本聚合与神经网络层算法来处理大的无纹理区域。1.介绍提出问题:.原创 2021-05-12 15:39:05 · 1609 阅读 · 0 评论 -
【菜鸟学习论文】Parallax Attention for Unsupervised Stereo Correspondence Learning
(机翻)贡献:1.提出了一种通用的视差注意机制来学习在无监督方式下具有大视差变化的图像对的立体对应关系2.PAM被成功地应用于两个特定的任务:立体匹配和立体图像SR。我们基于PAM的网络在立体匹配和立体图像SR方面都实现了最先进的性能。3.提出了一种用于训练立体图像SR网络的Flickr数据集Flickr1024。这个数据集由1024个高质量的立体声图像对组成,并涵盖了各种场景。2.相关工作近几十年来,[3]、[5]、[6]、[7]、[8]、[10]等各种任务。在这里,我们关注两个特定的任务,包原创 2021-05-11 20:18:19 · 1764 阅读 · 1 评论 -
【读代码】PSMNet/models
submodule.py 网络的结构注意卷积操作后的**[N,Cout,Hout,Wout]**的计算"""为后面做准备"""def convbn(in_planes, out_planes, kernel_size, stride, pad, dilation):#注意 padding:这样可以使得dilation对Hout,Wout的大小没有影响 return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=kerne原创 2021-05-10 22:35:44 · 765 阅读 · 0 评论