【读不下去了】Multi-View Reconstruction PreservingWeakly-Supported Surfaces

论文:Multi-View Reconstruction PreservingWeakly-Supported Surfaces
补充:Exploiting Visibility Information in Surface Reconstruction to Preserve Weakly Supported Surfaces
在这里插入图片描述

(c)弱支持区域效果不好

在这里插入图片描述

2. The Base-line method

图的节点对应于 Delaunay 四面体,有向边对应于相邻四面体之间的有向三角形。 考虑从四面体 a a a 的一侧看的相邻四面体 a a a b b b 之间的面 f f f。面 f f f 在图中由从节点 a a a 指向节点 b b b 的边表示。该图增加了一个额外的 s o u r c e source source (代表外部)和一个 s i n k sink sink(代表内部)节点,以及从源到每个节点的边( s − e d g e s s-edges sedges)和从每个节点到汇的边( t − e d g e s t-edges tedges)。最后,切割的有向边(从标记为 s o u r c e source source 的节点到标记为 s i n k sink sink的节点的有向边)对应于重建的定向表面上的三角形。

一般把点作为结点,点之间的连线作为边,为了找到从源点到汇点的连线,切割点之间的连线(边); 这个为了求解曲面,以此类比。

图4展示了边(面)的权重的计算方法。考虑一个点 p p p 和一个相关的相机中心 c c c。把所有与线段 ( c , p + p − c ∣ p − c ∣ σ ) (c, p + \frac{p-c}{|p−c|}σ) (c,p+pcpcσ)相交的四面体,按照交点到 c c c 的距离从大到小排序,记为交叉四面体。
s − t s-t st 图的所有边(面)的权重最初设置为零。对于每个点 p p p 和分配给 p p p 的相机中心 c c c,交叉面体(与上述线段相交)的边(面)的权重增加一个常数值 α v i s α_{vis} αvis。第一个交叉四面体分配无穷大值(图 4 中的四面体 i 1 i_1 i1)。最后,将 α v i s α_{vis} αvis值添加到最后一个交叉四面体的 t t t 边(见图 4)
图4:显示了如何计算图中边的权重。
s − t s-t st 图的有向边的权重由 camera-point对 的数量决定,其中点被相机中边缘对应的面所遮挡。一个节点的 t − e d g e t-edge tedge 权重由camera-point 对的数量决定,对于这些点,该点在摄像机中遮挡了相应的四面体,直到该点后面的深度 σ σ σ。四面体的free-space-support是对应的四面体的节点的所有传入边的权重之和。 free-space-support与点被相机中的四面体遮挡的 camera-point对 的总数有关。

补充论文:Exploiting Visibility Information in Surface Reconstruction to Preserve Weakly Supported Surfaces

  • camera-point 对
    ![在这里插入图片描述](https://img-blog.csdnimg.cn/5421c3e0a141404f8a3a29f182f1c53c.png

在这里插入图片描述
在这里插入图片描述

  • free-space-support 𝑓 𝑓 f是一种测量。粗略地说,如果一个中心为 𝑐 𝑐
multi-beam imaging是一种在医学图像处理中常用的技术,它可以提高图像的分辨率和质量。在MATLAB中有多种方法可以实现multi-beam imaging。 首先,可以使用信号处理工具箱中的beamforming算法来实现multi-beam imaging。Beamforming是一种将多个接收到的信号进行合并处理的技术,通过合并同的信号,可以增强图像的对比度和清晰度。在MATLAB中,可以使用beamformplot函数来进行beamforming操作,并通过调整参数来优化图像质量。 其次,可以利用MATLAB中的超分辨率图像重建算法来实现multi-beam imaging。超分辨率图像重建是一种通过将多幅低分辨率图像合成为一幅高分辨率图像的技术,可以提高图像的细节和清晰度。在MATLAB中,可以使用Super-resolution Image Reconstruction (SRR) Toolbox来实现超分辨率图像重建,并通过调整参数和算法来优化multi-beam imaging效果。 最后,还可以利用图像后处理技术来进一步改善multi-beam imaging结果。例如,可以使用图像增强技术来增强细节和对比度,可以使用图像去噪技术来降低噪声干扰,可以使用图像分割技术来提取感兴趣的结构等。MATLAB中有丰富的图像后处理工具箱,可以使用这些工具来进行multi-beam imaging后处理。 总之,利用MATLAB中的信号处理和图像处理工具,可以实现高质量的multi-beam imaging。通过选择合适的算法和调整参数,可以优化multi-beam imaging的效果,提高图像的分辨率和质量。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值