1.
贡献:
1.提出了一个用于联合语义分割、边界检测和立体匹配的神经网络,其中语义和边界信息一致性成为视差估计的积极指导。
2.设计了一种使用注意力机制构建混合成本量的方法,该方法分别结合了三种不同的成本量,它们是语义成本量、边界成本量和空间特征成本量。
4.

4.1 Basic Network Architecture
包括语义分割、边界检测和立体匹配三个分支。 以上三个分支共享特征提取模块,减少了计算参数,从而提高了计算速度。

首先,立体图像对流入特征提取块,如图3所示,主要由二维卷积层和空间金字塔池化模块组成。同时,共享左右图像的特征提取块参数。
然后,将特征Fil 和Fir 馈入三个子网络。 语义特征Fisl 和Fisr 在语义分割子网中计算,边界特征Fibl 和Fibr 在边界检测子网中计算。
然后将语义特征、边界特征和空间特征输入立体匹配神经网络。 立体匹配神经网络的结构基于从粗到细的准则,分为三个阶段。在每个阶段,混合成本量由三个成本量构成,分别由空间特征Fil 和Fir 、语义特征Fisl 和Fisr 以及边界特征Fibl 和Fibr 组成。
最后利用3D CNN块学习代价量,利用视差回归层生成视差图d或残差图。 值得注意的是,在最高分辨率(

本文介绍了一种新颖的深度学习网络,它将语义分割、边界检测与立体匹配相结合,通过注意力机制优化混合成本量,利用语义、边界和空间特征提升视差估计的准确性。网络结构包括共享特征提取模块,逐步细化视差,同时引入语义和边界信息增强细节匹配。
最低0.47元/天 解锁文章
560

被折叠的 条评论
为什么被折叠?



