一致性聚类

一致性聚类(共识聚类)
定义:聚合多种聚类算法结果的方法,也称之为聚类集成或聚类的聚合。指的是对于一个特定的数据集已经获得了许多不同的(输入)聚类,并且希望找到一个单一的(一致的)聚类,在某种意义比现有的聚类更加合适。因此,一致性聚类是协调来自不同来源或同一算法的不同运行的关于同一数据集的聚类信息的问题。

非监督学习的一致性聚类类似于监督学习的中的集成学习(顾名思义,就是将多个单一模型进行组合,最后形成一个更好的模型的过程。之所以组合多个单一学习器,是因为很多时候单一学习器的效果不够理想,多个模型组合可以互帮互助,各取所长,从而更好地完成任务)

一致性聚类依赖于所选聚类方法在数据集子样本上的多次迭代。通过利用子采样来诱导采样变异性,这为我们提供了聚类稳定性和参数决策的指标。

参考 一致性聚类

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值