ConsensusClusterPlus, 一步到位的一致性聚类!

欢迎关注”生信修炼手册”!

在之前的文章中分享了一致性聚类的原理,本文介绍下如何用R语言进行分析。ConsensusClusterPlus这个R包,就是专门用于一致性聚类分析的,为了简化调用,甚至将所有的步骤都封装到了一个函数里面,所以其使用方法非常的简单,一共三步

1. 加载R包

2. 把表达量数据读进去

3. 运行一致性聚类的函数

是不是和把大象装进冰箱一样简单,但是我们必须注意,这样简单的背后,实际是一个黑盒子,如果不了解原理,你只能得到结果,但是结果说明了什么信息,你一无所知。

下面是具体步骤

1. 准备输入数据

行为基因,列为样本的表达量数据,为了获得最佳的聚类效果,可以对基因进行筛选, 对矩阵进行归一化操作,代码如下

> library(ALL)
> data(ALL)
> d=exprs(ALL)
# 表达量数据
> d[1:5,1:5]
             01005    01010    03002    04006    04007
1000_at   7.597323 7.479445 7.567593 7.384684 7.905312
1001_at   5.046194 4.932537 4.799294 4.922627 4.844565
1002_f_at 3.900466 4.208155 3.886169 4.206798 3.416923
1003_s_at 5.903856 6.169024 5.860459 6.116890 5.687997
1004_at   5.925260 5.912780 5.893209 6.170245 5.615210
> mad(d[1, ])
[1] 0.2701619
> mads=apply(d,1,mad)
> d=d[rev(order(mads))[1:5000],]
> dim(d)
[1] 5000  128
# 归一化操作
> d = sweep(d,1, apply(d,1,median,na.rm=T))
> dim(d)
[1] 5000  128
> d[1:5,1:5]
              01005     01010       03002     04006       04007
36638_at  1.5561207 0.9521271 -0.05018082  4.780378  3.93006775
39318_at  1.1913532 2.5013225 -2.38793537 -1.199521  1.93626914
38514_at  1.0207162 3.2785671  1.55949145 -3.345919 -0.01548269
266_s_at  1.8292604 0.3624327  1.54913247 -1.286294  1.75669694
38585_at -0.9240204 0.1895020  3.44968363 -2.216822  5.18702726

2. 运行ConsensusClusterPlus

ConsensusClusterPlus就是核心函数了,包括了以下几个参数

1. pItem, 选择80%的样本进行重复抽样

2. pfeature, 选择80%的基因进行重复抽样

3. maxK, 最大的K值,形成一系列梯度

4. reps, 重复抽样的数目

5. clusterAlg, 层次聚类的算法

6. distanc, 距离矩阵的算法

7. title, 输出结果的文件夹名字,包含了输出的图片

8. seed, 随机种子,用于重复结果

注意,在实际运行中,推荐reps设置的更大,比如1000, maxK设置的更大,比如20,具体代码如下

> library(ConsensusClusterPlus)
> title=tempdir()
> results = ConsensusClusterPlus(d,maxK=6,reps=50,pItem=0.8,pFeature=1, title=title,clusterAlg="hc",distance="pearson",seed=1262118388.71279,plot="png", writeTable = TRUE)
end fraction
clustered
clustered
clustered
clustered
clustered

函数的返回值是一个列表,每个列表子项对应给具体的K, K最小值为2

> str(results[[2]])
List of 5
$ consensusMatrix: num [1:128, 1:128] 1 1 0.895 1 1 ...
$ consensusTree  :List of 7
  ..$ merge      : int [1:127, 1:2] -1 -4 -5 -6 -7 -9 -11 -12 -14 -15 ...
  ..$ height     : num [1:127] 0 0 0 0 0 0 0 0 0 0 ...
  ..$ order      : int [1:128] 101 128 127 126 125 124 123 122 121 120 ...
  ..$ labels     : NULL
  ..$ method     : chr "average"
  ..$ call       : language hclust(d = as.dist(1 - fm), method = finalLinkage)
  ..$ dist.method: NULL
  ..- attr(*, "class")= chr "hclust"
$ consensusClass : Named int [1:128] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "names")= chr [1:128] "01005" "01010" "03002" "04006" ...
$ ml             : num [1:128, 1:128] 1 1 0.895 1 1 ...
$ clrs           :List of 3
  ..$ : chr [1:128] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" ...
  ..$ : num 2
  ..$ : chr [1:2] "#A6CEE3" "#1F78B4"


# 一致性矩阵,样本的邻接矩阵
> dim(d)
[1] 5000  128


> dim(results[[2]][["consensusMatrix"]])
[1] 128 128


> results[[2]][["consensusMatrix"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000


> results[[2]][["consensusTree"]]




Call:
hclust(d = as.dist(1 - fm), method = finalLinkage)




Cluster method   : average
Number of objects: 128


# 样本的聚类树
> results[[2]][["consensusTree"]]




Call:
hclust(d = as.dist(1 - fm), method = finalLinkage)




Cluster method   : average
Number of objects: 128


# consensusClass, 样本的聚类结果
> length(results[[2]][["consensusClass"]])
[1] 128
> results[[2]][["consensusClass"]][1:5]
01005 01010 03002 04006 04007
    1     1     1     1     1




# ml, 就是consensusMatrix
> results[[2]][["ml"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000
> results[[2]][["consensusMatrix"]][1:5,1:5]
          [,1]      [,2]      [,3]      [,4]     [,5]
[1,] 1.0000000 1.0000000 0.8947368 1.0000000 1.000000
[2,] 1.0000000 1.0000000 0.9142857 1.0000000 1.000000
[3,] 0.8947368 0.9142857 1.0000000 0.8857143 0.969697
[4,] 1.0000000 1.0000000 0.8857143 1.0000000 1.000000
[5,] 1.0000000 1.0000000 0.9696970 1.0000000 1.000000


# clrs, 颜色
> results[[2]][["clrs"]]
[[1]]
  [1] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[13] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[25] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[37] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[49] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[61] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[73] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3"
[85] "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#A6CEE3" "#1F78B4"
[97] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#A6CEE3" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"
[109] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#A6CEE3" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"
[121] "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4" "#1F78B4"




[[2]]
[1] 2




[[3]]
[1] "#A6CEE3" "#1F78B4"

3. 收集cluster-consensus和item-consensus 矩阵

代码如下

> icl = calcICL(results,title=title,plot="png")
> icl[["clusterConsensus"]]
      k cluster clusterConsensus
[1,] 2       1        0.7681668
[2,] 2       2        0.9788274
[3,] 3       1        0.6176820
[4,] 3       2        0.9190744
[5,] 3       3        1.0000000
[6,] 4       1        0.8446083
[7,] 4       2        0.9067267
[8,] 4       3        0.6612850
[9,] 4       4        1.0000000
[10,] 5       1        0.8175802
[11,] 5       2        0.9066489
[12,] 5       3        0.6062040
[13,] 5       4        0.8154580
[14,] 5       5        1.0000000
[15,] 6       1        0.7511726
[16,] 6       2        0.8802040
[17,] 6       3        0.7410730
[18,] 6       4        0.8154580
[19,] 6       5        0.7390864
[20,] 6       6        1.0000000


> dim(icl[["itemConsensus"]])
[1] 2560    4
> 128 * (2 + 3 + 4 + 5 + 6)
[1] 2560


> icl[["itemConsensus"]][1:5,]
  k cluster  item itemConsensus
1 2       1 28031     0.6173782
2 2       1 28023     0.5797202
3 2       1 43012     0.5961974
4 2       1 28042     0.5644619
5 2       1 28047     0.6259350

4. 结果解读

在输出文件夹中,包含了多种输出可视化结果,每种结果的含义如下

1)consensus matrix 热图

consensus matrix 为样本方阵,数值代表两个同属一个cluster的可能性,取值范围从0到1, 颜色从白色到深蓝色

033851ff7aa5dc86990921109bd53c0e.png

2)consensus 累计分布图 CDF

对于每个K对应的consensus matrix,  采用100个bin的柱状图来计算累计分布,

CDF图可以用来帮助决定最佳的K值

84edbca4fb1ceefcf842889e1b23a140.png

3)delta area plot

对于每个K, 计算K和K-1相比,CDF 曲线下面积的相对变化,对于K=2, 因为没有K=1, 所以是totla CDF curve area,选取增加不明显的点作为最佳的K值

5f050c1e6a28916b7eccff85b9838a4e.png

4)tracling plot

行为样本,列为每个K, 用热图展示样本在每个K下的cluster, 用于定性评估不稳定的聚类和不稳定的样本

d4e8042368d732acea173307d2a4b04f.png

·end·

—如果喜欢,快分享给你的朋友们吧—

原创不易,欢迎收藏,点赞,转发!生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战!

本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。

  更多精彩

  写在最后

转发本文至朋友圈,后台私信截图即可加入生信交流群,和小伙伴一起学习交流。

扫描下方二维码,关注我们,解锁更多精彩内容!

9565a72681bc7f3a1468d928e9d1524a.png

一个只分享干货的

生信公众号

  • 10
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
ConsensusClusterPlus和K-means聚类是两种不同的聚类方法,它们的原理和应用也存在一些差异。 K-means聚类是一种基于距离度量的划分聚类方法,它将样本分成k个簇,通过最小化样本点与簇中心之间的距离来进行聚类。K-means聚类需要预先指定簇的数量k,并且对初始簇中心的选择敏感。该方法迭代地更新簇中心,直到达到收敛条件。 ConsensusClusterPlus是一种基于聚类的融合方法,旨在提高聚类结果的稳定性和可靠性。它通过对原始数据进行多次随机重抽样和聚类操作,得到多个聚类结果,并使用一致性矩阵来评估不同聚类结果之间的一致性。最终,ConsensusClusterPlus通过共识聚类算法将这些聚类结果合并成一个稳定的聚类解决方案。 ConsensusClusterPlus相比于K-means聚类具有以下特点: 1. 稳定性:ConsensusClusterPlus通过重复聚类操作和一致性矩阵评估,可以提供更加稳定和可靠的聚类结果,减少了单次随机初始化对结果的影响。 2. 自动确定簇的数量:ConsensusClusterPlus可以在聚类过程中自动确定最优的簇的数量,而不需要预先指定k值。 3. 聚类结果评估:ConsensusClusterPlus提供了一致性矩阵和其他评估指标,用于评估聚类结果的质量和可靠性。 总之,ConsensusClusterPlus是一种通过多次聚类和融合操作来提高聚类结果稳定性的方法,相比之下,K-means聚类是一种简单而常用的划分聚类方法。选择使用哪种方法取决于数据的性质、聚类目标以及对结果稳定性和可靠性的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值