现有的微调大模型的开源工具

一、LLaMA-Factory

1.简介
LLaMA Factory是一个统一高效的大语言模型微调框架,支持100多种大语言模型的零代码微调。它提供命令行和Web UI两种使用方式,让用户能够轻松地对各种大模型进行训练和部署。该项目由hiyouga开发,旨在降低大模型微调的技术门槛。

2.Github 项目地址

二、UnSloth

1.简介
UnSloth是一个专注于加速大型语言模型(LLM)微调的开源项目。它能让Llama 4、Gemma 3、Phi-4、Qwen 2.5和Mistral等模型的微调速度提高2倍,同时减少80%的显存使用。该项目由Daniel Han和Michael Han领导开发,旨在使AI模型训练更加高效和经济。

2.Github 项目地址

三、PyTorch Lightning

1.简介
PyTorch Lightning 是一个深度学习框架,用于预训练、微调和部署 AI 模型。它是对 PyTorch 的高级抽象,旨在简化研究和工程代码,使深度学习更加高效和可读。PyTorch Lightning 通过提供结构化的代码组织方式,让用户专注于研究而不是工程细节。

2.Github 项目地址

四、Self-LLM

1.简介
"开源大模型食用指南"是一个围绕开源大模型的全流程教程项目,针对国内初学者提供从环境配置到部署使用再到模型微调的完整指导。该项目旨在简化开源大模型的使用流程,让更多普通学生和研究者能够轻松使用开源大模型。项目涵盖了国内外主流开源大语言模型(如LLaMA、ChatGLM、InternLM、Qwen等)的部署、应用和微调方法。

2.Github 项目地址

五、ms-swift

1.简介
ms-swift(SWIFT)是魔搭社区提供的大模型与多模态大模型微调部署框架,支持450+大模型与150+多模态大模型的训练、推理、评测、量化与部署全流程。该项目集成了最新的训练技术,包括LoRA、QLoRA等轻量化训练技术和DPO、GRPO等人类对齐训练方法。SWIFT提供了基于Gradio的Web-UI界面,使得用户可以零门槛地进行大模型训练和部署。

2.Github 项目地址

原文链接

### 微调大型语言模型以用于聊天机器人开发 微调大型语言模型(LLMs)以适配特定应用场景,例如聊天机器人开发,通常涉及多个步骤和技术方法。以下是关于如何实现这一目标的关键要点: #### 数据准备 为了使模型能够更好地理解对话场景并生成高质量的回答,需要收集大量的领域相关数据集作为训练材料[^1]。这些数据可以来自真实的客户支持记录、社交媒体互动或其他类似的自然语言交流环境。 #### 指令设计与调整 通过精心设计的指令模板来引导模型学习特定的任务模式非常重要。这包括但不限于定义清晰的角色扮演情景、提供多样化的输入样例及其对应的期望输出形式等内容[^5]。 #### 参数高效微调 (Parameter-Efficient Fine-Tuning) 考虑到计算资源成本等因素,在实际操作过程中往往采用参数高效微调策略而非全量重新训练整个网络结构。这种方法允许只更新少量新增加或者修改过的权重值即可达到不错的效果提升目的[^2]。 #### 使用预训练库简化流程 利用现有开源框架如HuggingFace Transformers等提供的工具包可以帮助开发者快速上手实施上述提到的各种定制化需求而无需从零构建解决方案[^4] 。 这些平台不仅包含了多种已经过良好优化的基础架构选项供选择 ,同时也内置了许多实用功能模块可以直接应用于项目当中 。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("model_name_or_path") model = AutoModelForCausalLM.from_pretrained("model_name_or_path") def generate_response(prompt_text): inputs = tokenizer.encode_plus( prompt_text, return_tensors="pt", max_length=512, truncation=True ) outputs = model.generate(**inputs, num_beams=5, no_repeat_ngram_size=2) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 此代码片段展示了如何加载预先训练好的因果关系型语言模型,并基于给定提示词生成回复消息的过程示意图。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值