树莓派摄像头测距程序

焦距=像素*距离/实际宽度。
距离=实际宽度*焦距/像素 

import cv2
import time
from collections import  deque
import numpy as np
#设定蓝色阈值,HSV空间
blueLower = np.array([100, 100, 100])
blueUpper = np.array([120, 255, 255])
#初始化追踪点的列表
mybuffer = 64
pts = deque(maxlen=mybuffer)
#打开摄像头
camera = cv2.VideoCapture(0)
#等待两秒
time.sleep(2)
#创建一个线程类
def ceju_xianshi():
    while True:
        # 读取帧
        (ret, frame) = camera.read()
        frame = cv2.flip(frame, 1, dst=None)  # 水平镜像
        # 判断是否成功打开摄像头
        if not ret:
            print('No Camera')
            break
        # frame = imutils.resize(frame, width=600)
        # 转到HSV空间
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        # 根据阈值构建掩膜
        mask = cv2.inRange(hsv, blueLower, blueUpper)
        # 腐蚀操作
        mask = cv2.erode(mask, None, iterations=2)
        # 膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点
        mask = cv2.dilate(mask, None, iterations=2)
        # 轮廓检测
        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
        # 初始化瓶盖圆形轮廓质心
        center = None
        # 如果存在轮廓
        if len(cnts) > 0:
            # 找到面积最大的轮廓
            c = max(cnts, key=cv2.contourArea)
            # 确定面积最大的轮廓的矩形
            x, y, w, h = cv2.boundingRect(c)
            # 计算轮廓的矩
            M = cv2.moments(c)
            # 计算质心
            center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
            # 只有当半径大于10时,才执行画图
            a = int(M["m10"] / M["m00"])
            b = int(M["m01"] / M["m00"])
            juli = 1268/w*2.54
            print(juli)#输出距离
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 显示矩形框
            cv2.circle(frame, center, 1, (0, 0, 255), -1)  # 显示圆心
        cv2.imshow('Frame', frame)
        cv2.waitKey(1)
        # 摄像头释放
if __name__ == '__main__':
    ceju_xianshi()

第二版

import cv2
import time
import numpy as np
#设定蓝色阈值,HSV空间
blueLower = np.array([100, 100, 100])
blueUpper = np.array([120, 255, 255])
#打开摄像头
camera = cv2.VideoCapture(0)
#创建一个线程类
def ceju_xianshi():
    while True:
        # 读取帧
        (ret, frame) = camera.read()
        frame = cv2.flip(frame, 1, dst=None)  # 水平翻转镜像
        # 判断是否成功打开摄像头
        if not ret:
            print('No Camera')
            break
        # 转到HSV空间
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        # 根据阈值构建掩膜
        mask = cv2.inRange(hsv, blueLower, blueUpper)
        # 腐蚀操作
        mask = cv2.erode(mask, None, iterations=2)
        # 膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点
        mask = cv2.dilate(mask, None, iterations=2)
        # 轮廓检测
        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
        # 如果存在轮廓
        if len(cnts) > 0:
            # 找到面积最大的轮廓
            c = max(cnts, key=cv2.contourArea)
            # 确定面积最大的轮廓的矩形
            x, y, w, h = cv2.boundingRect(c)
            #计算目标距离
            juli = 1268/w*2.54
            # 输出距离
            print(juli)
            # 显示矩形框
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
        cv2.imshow('Frame', frame)
        cv2.waitKey(1)
        # 摄像头释放
if __name__ == '__main__':
    ceju_xianshi()

第三版树莓派摄像头,修改了参数

import cv2

import time

import numpy as np

#设定蓝色阈值,HSV空间

blueLower = np.array([80, 100, 100])

blueUpper = np.array([100, 255, 255])

#打开摄像头

camera = cv2.VideoCapture(0)

#创建一个线程类

def ceju_xianshi():

    while True:

        # 读取帧

        (ret, frame) = camera.read()

        frame = cv2.flip(frame, 1, dst=None)  # 水平翻转镜像

        # 判断是否成功打开摄像头

        if not ret:

            print('No Camera')

            break

        # 转到HSV空间

        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        # 根据阈值构建掩膜

        mask = cv2.inRange(hsv, blueLower, blueUpper)

        # 腐蚀操作

        mask = cv2.erode(mask, None, iterations=2)

        # 膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点

        mask = cv2.dilate(mask, None, iterations=2)

        # 轮廓检测

        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]

        # 如果存在轮廓

        if len(cnts) > 0:

            # 找到面积最大的轮廓

            c = max(cnts, key=cv2.contourArea)

            # 确定面积最大的轮廓的矩形

            x, y, w, h = cv2.boundingRect(c)

            #计算目标距离

            juli = (1029.006/w)*2.54

            # 输出距离

            print("juli",juli)

            print("shijikuandu",w)

            # 显示矩形框

            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)

        cv2.imshow('Frame', frame)

        cv2.waitKey(1)

        # 摄像头释放

if __name__ == '__main__':

    ceju_xianshi()




第四版,增加显示功能

import cv2

import time

import numpy as np

#设定蓝色阈值,HSV空间

blueLower = np.array([80, 100, 100])

blueUpper = np.array([100, 255, 255])

#打开摄像头

camera = cv2.VideoCapture(0)

#创建一个xianshifangfa

def ceju_xianshi():

    while True:

        # 读取帧

        (ret, frame) = camera.read()

        frame = cv2.flip(frame, 1, dst=None)  # 水平翻转镜像

        # 判断是否成功打开摄像头

        if not ret:

            print('No Camera')

            break

        # 转到HSV空间

        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        # 根据阈值构建掩膜

        mask = cv2.inRange(hsv, blueLower, blueUpper)

        # 腐蚀操作

        mask = cv2.erode(mask, None, iterations=2)

        # 膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点

        mask = cv2.dilate(mask, None, iterations=2)

        # 轮廓检测

        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]

        # 如果存在轮廓

        if len(cnts) > 0:

            # 找到面积最大的轮廓

            c = max(cnts, key=cv2.contourArea)

            # 确定面积最大的轮廓的矩形

            x, y, w, h = cv2.boundingRect(c)

            #计算目标距离

            juli = (1029.006/w)*2.54
            juli1 = str(juli)
            

            # 输出距离

            print("juli",juli1)

            print("shijikuandu",w)

            # 显示矩形框

            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
            cv2.putText(frame, juli1, (30, 300), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 3)#shipin_zhong,xinshi_juli

        cv2.imshow('Frame', frame)
        
        
        cv2.waitKey(1)

        # 摄像头释放

if __name__ == '__main__':

    ceju_xianshi()




本次对亮度和颜色范围进行了调整,

只识别这种蓝色

 

  • 10
    点赞
  • 123
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值