反正弦变换是反正弦和平方根变换函数的组合。 它采用asin(sqrt(x))的形式,其中x是从0到1的实数。它是平方根转换,有助于处理接近于1或0的概率,百分比和比例。 另外,由于反正弦函数的值不大于1,当x为百分比时,需转化为小数或分数,否则会报错。
反正弦变换函数类似于logit变换或log变换, 这种反向作用扩大了可变范围,同时将其向中心挤压,使极端情况更容易看到。
# arcsine transformation in r
> asin(sqrt(0.5))
[1] 0.7853982
该例子说明了该组合反正弦变换公式的结果,该公式将0.5扩展为0.7853982。 当自变量或因变量值接近于1或0时,转换后的数据中的这种拉伸甚至更加显著。 但是,输入值必须在零到一的范围内。
实例:
# arcsine transformation in r example
> x = c(0:100)
> y = asin(sqrt(x/100))
> plot(x, y)
反正弦平方根变换在比例数据中有许多应用,适用于线性回归模型,因为它可以扩展线性模型的等方差,从而使变换后的值更清晰。 反正弦平方根变换。 在处理正态分布时,这也很有帮助,因为数据的分数在末端很小。 这些常见的转换有助于将其扩展为具有更好的解释性的图或线性关系。
2.inverse normal rank transformation(逆正态秩变换),用于非正态数据的正态转换
qnorm((rank(x,na.last="keep")-0.5)/sum(!is.na(x)))
inormal <- function(x) | |
{ | |
qnorm((rank(x, na.last = "keep") - 0.5) / sum(!is.na(x))) | |
} |