pytorch数据统计

本文详细介绍了PyTorch中张量的各种操作,包括范数计算、统计属性如min、max、mean、prod和sum,以及索引值计算、argmax、argmin等。同时,还讲解了如何使用dim和keepdim参数来控制维度处理,以及Top-k和k-th函数的应用。最后,对比了torch.eq和torch.equal的区别。
摘要由CSDN通过智能技术生成

norm-p(范数)

通过设置dim,在不同维度上进行范数计算

统计属性

min,max,mean:最小、最大、平均

prod():累乘        sum():求和

首先会将tensor展开,从而计算索引值

argmax():返回最大值的索引

argmin():返回最小值的索引

如果需要返回指定类型的索引值,需要指定维度

dim,keepdim

keepdim:保证得到的结果维度个数与原先的维度个数一致(防止维度缺失)

Top-k/ k-th

Top-k():返回指定维度指定个数个最大/最小值

k-th():返回第K个小的值

compare

torch.eq(a,b):得到每个元素的二进制掩膜

torch.equal():返回全部是否相等(True/False)

 

 

【课程介绍】      Pytorch项目实战 垃圾分类课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。    从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。    课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。【课程要求】 (1)开发环境:python版本:Python3.7+; torch版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm;(3)学员基础:需要一定的Python基础,及深度学习基础;(4)学员收货:掌握最新科技图像分类关键技术;(5)学员资料:内含完整程序源码和数据集;(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码【课程特色】 阵容强大讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。仅跟前沿基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。实战为先根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目保障效果项目实战方向包含了学术届和工业届最前沿技术要点项目包装简历优化课程内垃圾分类图像实战项目完成后可以直接优化到简历中【课程思维导图】 【课程实战案例】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值