基于多阈值的形态提取遥感图像中的沿海线的特征方法(Qu Jishuang)

论文阅读笔记

Title:A multi-threshold based morphological approach for extracting coastal line feature in remote sensed images

题目:基于多阈值的形态提取遥感图像中的沿海线特征的方法

摘要

在执行海监测、海上搜救、利用遥感图像进行海污监测等任务的同时,应首先确定沿海线特征。阈值方法是一种简单但有效的图像分割方法,同样,它们可用于检测远程感应图像中的沿海线特征。然而,虽然传统的阈值方法过去是这样做的,但它总是缺乏足够的鉴别能力,以物体的阴影,弱散射的植被,黑暗的人造建筑,海湾模糊的噪音沿海岸线。本文提出了一种基于多阈值的形态学方法,首先将隔离区域划分为大陆内部、海外和沿海隔离区域,然后利用两个定义和形态学操作者对沿海区域进行进一步处理,以提高检测精度,减少误检测,特别是提高上述星云阴影、植被和暗人工建筑的检测精度。实验执行,结果表现出比传统阈值方法具有更好的性能。

1. INTRODUCTION

利用遥感数据执行海上监测、沉船救助、海污监测等任务,包括大面积监测、快速响应时间、成本低等,具有许多优点,可显著提高执行任务的效率。因此,船上的光学和SAR数据被用于监测海洋和海洋。

在利用远程感知数据进行上述应用的同时,提高效率的一个重要步骤是首先通过计算机自动提取沿海线特征,然后对海上目标进行精确处理(http://www.wins.uva.nl/Research/isis)。

对于SAR数据,由于水与固体材料之间的散射特性不同,可以有效采用强度阈值法提取沿海线特征,但提取沿海线的结果受分辨率和斑点的影响。

光学数据由于其高分辨率,甚至可用于监控偷渡、走私,此外还可用于上述应用。一般来说,强度阈值方法仍可用于有效提取沿海线特征。

阈值法(Sahoo,1988)是一种简单而有效的图像分析和图像分割方法(Kohler,1981年),用于处理多种类型的图像,包括光学图像、SAR图像、多光谱图像等。同时,它传播了许多详细的做法(Kapur,1985年;佩雷斯,1987年)。阈值方法还可用于提取远程感应图像中的沿海特征。但是,如果存在一些黑暗区域,如伪水域,如物体的阴影,弱散植被,沿沿海地区昏暗的建筑物,其中一些可能会被视为海洋的一部分,传统的阈值方法,这将导致一些错误的判断。不, 噪音可能使一些属于海洋的水域隔离, 并导致错误的判断。

一般来说,数学形态学运算符(Heijmans,1994年)包括侵蚀、稀释、开放、关闭等,它们被广泛用于分割图像、增强图像(Pesaresi,2001年)。本文提出了一种基于多阈值的形态学方法,用于提取光学远程感知图像中的沿海线特征。首先,我们采用传统的灰色阈值方法提取基本沿海线特征,这是一个由许多复杂隔离区域组成的二进制图像。然后,通过界定区域距离,将隔离区域分为大陆内隔离区 A i s o C o n t A^{Cont}_{iso} AisoCont、外海隔离区 A i s o C o a s t A^{Coast}_{iso} AisoCoast和沿海隔离区 A i s o C o a s t A^{Coast}_{iso} AisoCoast。之后,沿海偏僻地区海岸 A i s o C o a s t A^{Coast}_{iso} AisoCoast被做了一个进一步的过程,即基于先前知识的区域阈值用于识别沿海 A i s o C o a s t A^{Coast}_{iso} AisoCoast的大陆或海域属性。通过形态学操作者 Erosion 到最小路径的进一步过程,将属于海域的沿海隔离区域与主要海域连接。通过它,可以提高划分海域和大陆面积的准确性,降低错误判断率。最后,形态学运算符"打开"和"关闭"用于填充相同的属性、大陆或海洋区域,并在远程感应图像中获取准确的成本线特征。

2. COASTAL LINE FEATURE EXTRACTING BY THRESHOLDING APPROACH

各种物体的光散射具有不同的特征,在光学远程感知图像中表现出不同的颜色或强度信息。强度阈值方法利用水的暗强度信息提取沿海线特征。

假设强度阈值为 T h r e s h Thresh Thresh,对于光学遥感图像 I I I I ( i , j ) I(i, j) I(i,j)是任何一个像素,然后我们处理 I ( i , j ) I(i, j) I(i,j):
I ( i , j ) = { 255 i f I ( i , j ) ≥ T h r e s h 0 i f I ( i , j ) < T h r e s h I(i, j)=\left \{ \begin{aligned} 255 & & if & & I(i, j) \ge Thresh \\ 0 & & if & & I(i, j) \lt Thresh \end{aligned} \right. I(i,j)={2550ififI(i,j)ThreshI(i,j)<Thresh

从经验上,Thresh 选择图像的均值强度或其相邻值,也就是说:
T h r e s h = m e a n ( I ) + Δ Thresh=mean(I)+\Delta Thresh=mean(I)+Δ
上式中的 Δ \Delta Δ T h r e s h Thresh Thresh的优化,Thresh 也可以由 Otsu (Otsu, 1979 年) 提议的方法计算。

通过这个程序,很容易划分暗强度的主要海域, m a i n A S e a main A^{Sea} mainASea和强散射主陆, m a i n A C o n t main A^{Cont} mainACont。当然,在陆地面积中,也有一些暗强区域,如湖泊、弱散射植被、物体阴影等,在门槛处理后会导致一些孤立的假海区。同时,沿海线沿线的一些海湾可能由于噪音而被隔离为水域,而岛上的岛屿或船只将形成陆地,成为孤立的点或区域。同样,图像的噪声也会导致一些孤立的点或区域。因此,通过阈值处理的结果将是包含主要沿海线特征的二进制值图像。

为了准确提取沿海线,必须别有用心地使用形态学操作器处理这些隔离点或区域。为了便于描述,我们将在下面将所有孤立的点和地区视为孤立的区域。

3. 利用形态学操作器对沿海线特征进行分析

形态学操作器

将结构元素作为 S E SE SE。对于图像 I I I中的任何一个像素 p p p,它的值为 v a l u e ( p ) value(p) value(p)。假设 N S E ( p ) N_{SE}(p) NSE(p)是由在像素 p p p上操作的 S E SE SE形成的相邻区域,然后对 p p p进行的 E r o s i o n Erosion Erosion操作 S E SE SE定义为:
E r o s i o n S E ( p ) = { ∧ v a l u e ( p ′ ) ∣ p ′ ∈ { p } ∪ N S E ( p ) } Erosion_{SE}(p)=\{ \wedge value(p^{'})|p^{'} \in \{p\} \cup N_{SE}(p)\} ErosionSE(p)={value(p)p{p}NSE(p)}

同时,对 p p p进行的 D i l a t i o n Dilation Dilation操作 S E SE SE定义为:
D i l a t i o n S E ( p ) = { ∨ v a l u e ( p ′ ) ∣ p ′ ∈ { p } ∪ N S E ( p ) } Dilation_{SE}(p)=\{ \vee value(p^{'})|p^{'} \in \{p\} \cup N_{SE}(p)\} DilationSE(p)={value(p)p{p}NSE(p)}

然后,对 p p p进行的 O p e n Open Open C l o s e Close Close操作 S E SE SE定义为:
O p e n S E ( p ) = D i l a t i o n S E E r o s i o n S E ( p ) C l o s e S E ( p ) = E r o s i o n S E D i l a t i o n S E ( p ) Open_{SE}(p)=Dilation_{SE}Erosion_{SE}(p) \\ Close_{SE}(p)=Erosion_{SE}Dilation_{SE}(p) OpenSE(p)=DilationSEErosionSE(p)CloseSE(p)=ErosionSEDilationSE(p)

3.1 孤立区域判断

定义1 区域距离:
假设两个区域 A 1 A_1 A1 A 2 A_2 A2,未在 4 相邻模式下连接, P 1 , P 2 P_1, P_2 P1,P2分别是 A 1 , A 2 A_1, A_2 A1,A2中的一个像素点, C o n n Conn Conn是像素之间的相邻连接模式,则 A 1 A_1 A1 A 2 A_2 A2之间的区域距离为:
D ( A 1 , A 2 ) = min ⁡ P 1 ∈ A 1 , P 2 ∈ A 2 ( d i s t ( P 1 , P 2 ) , C o n n ) D(A_1, A_2)=\min \limits _{P_1 \in A_1, P_2 \in A_2} (dist(P_1, P_2), Conn) D(A1,A2)=P1A1,P2A2min(dist(P1,P2),Conn)
P 1 D , P 2 D P_1^D, P_2^D P1D,P2D A 1 , A 2 A_1, A_2 A1,A2,对应于区域距离的像素为"距离像素"。

通常, C o n n Conn Conn一般选择8或4相邻连接,如果 A 1 , A 2 A_1, A_2 A1,A2相连接,则区域距离为0.显然,在 A 1 , A 2 A_1, A_2 A1,A2中与区域距离对应的距离像素 P 1 D , P 2 D P_1^D, P_2^D P1D,P2D并不唯一。

在擦除孤立区域 A i s o A_{iso} Aiso 之前,必须确认它属于谁。我们划分这些孤立的区域作为大陆内孤立的区域 A i s o C o n t A_{iso}^{Cont} AisoCont, 外海孤立区域 A i s o S e a A_{iso}^{Sea} AisoSea,以及沿海孤立地区 A i s o C o a s t A_{iso}^{Coast} AisoCoast

将区域距离的阈值设为 T h r e s h 1 D , T h r e s h 2 D Thresh^D_1, Thresh^D_2 Thresh1D,Thresh2D,那么孤立区域通过下面的公式划分:
A i s o ∈ { A i s o C o n t i f D ( A i s o , m a i n A S e a ) > T h r e s h 1 D , A i s o S e a i f D ( A i s o , m a i n A S e a ) > T h r e s h 1 D , A i s o C o a s t o t h e r w i s e . A_{iso}\in\left\{ \begin{aligned} A^{Cont}_{iso} & & if & & D(A_{iso}, main & & A^{Sea}) \gt Thresh^D_1, \\ A^{Sea}_{iso} & & if & & D(A_{iso}, main & & A^{Sea}) \gt Thresh^D_1, \\ A^{Coast}_{iso} & & otherwise. \end{aligned} \right. AisoAisoContAisoSeaAisoCoastififotherwise.D(Aiso,mainD(Aiso,mainASea)>Thresh1D,ASea)>Thresh1D,

事实上,对于大陆内孤立区域和外海孤立区域,其大陆或海域属性可以根据大陆内部或外部海洋属性进行确认。然而,对于沿海孤立地区,它需要通过进一步的判断来确认其大陆或海域属性。这些判断可以由其区域特征决定。如果该海域面积遵循特定范围,我们将该海域视为海域。

3.2 连接孤立的海洋区域

在确认沿海隔离区域的大陆内或外海属性后,如果某一区域属于海域,仍有工作将其与 m a i n   A S e a main \ A^{Sea} main ASea 连接,使其成为海域的一部分。

定义2 最小路径:
假设区域 A 1 , A 2 A_1, A_2 A1,A2中的距离像素 P 1 D , P 2 D P_1^D, P_2^D P1D,P2D C o n n Conn Conn是相邻模式,那么最小路径定义为:
P a t h m i n = { P i x e l s ∣ m i n ( d i s ( P 1 D , P 2 D , C o n n ) ) } Path_{min}=\{ Pixels|min(dis(P_1^D, P_2^D, Conn)) \} Pathmin={Pixelsmin(dis(P1D,P2D,Conn))}

在这里插入图片描述

图1 沿海线特征提取的实验结果。(a) 源远程感应图像,(b) 用灰色阈值方法处理后处理的二进制图像,(c) 用传统阈值方法提取的沿海线特征,(d) 用拟议方法提取的沿海线特征。

然后,通过将属于海域的沿海隔离区域与 m a i n   A S e a main \ A^{Sea} main ASea连接,可以通过"水化" A i s o C o a s t A^{Coast}_{iso} AisoCoast地区与 A S e a A^{Sea} ASea地区之间的最小路径实现。

3.3 消除其他孤立区域

上述加工后,属于海域的孤立区与主海域相连,成为整个海域。其余的处理是消除其他孤立区域。我们可以使用区域擦除运算符来消除它们,并使他们成为大陆或海洋的一部分。假设 A r e a ( ⋅ ) Area(\cdot) Area()是同一强度的区域运算符,并在二进制值图像中将区域连接到孤立区域 A i s o A_{iso} Aiso,假设其像素值为 1 ,然后
I = { O p e n ( A i s o ) i f v a l u e ( A i s o ) = 1 a n d A r e a ( A i s o ) < T h r e s h O C l o s e ( A i s o ) i f v a l u e ( A i s o ) = 0 a n d A r e a ( A i s o ) < T h r e s h C I=\left\{ \begin{aligned} Open(A_{iso}) & & if & & value(A_{iso})=1 & & and & & Area(A_{iso}) \lt Thresh^O \\ Close(A_{iso}) & & if & & value(A_{iso})=0 & & and & & Area(A_{iso}) \lt Thresh^C \end{aligned} \right. I={Open(Aiso)Close(Aiso)ififvalue(Aiso)=1value(Aiso)=0andandArea(Aiso)<ThreshOArea(Aiso)<ThreshC

T h r e s h O , T h r e s h C Thresh^O, Thresh^C ThreshO,ThreshC分别表示 O p e n , C l o s e Open, Close Open,Close操作区域的阈值。

经过前几步处理后,将准确提取光学远程感应图像中的沿海线特征。

在这里插入图片描述

图2 在图 1-(b)、1-(c)和 1-(d)中标记的 1 和 2 区域的放大结果。(a) 扩大区域为1-b,(b) 扩大区域为1-c,(c) 扩大区域为1-d,(d) 扩大区域为2-b,(e) 扩大区域为2-c,(f) 扩大区域为2-d。

4. 实验和结果分析

为了验证建议的方法,对遥感图像进行了实验。在这里,我们设置 A i s o S e a A_{iso}^{Sea} AisoSea A i s o C o n t A_{iso}^{Cont} AisoCont区域距离 T h r e s h 1 D Thresh^D_1 Thresh1D T h r e s h 2 D Thresh^D_2 Thresh2D 到 2 像素,区域距离的连接模式 C o n n Conn Conn 和最小路径到 4 连接。 O p e n Open Open 操作的区域阈值为 16 像素, C l o s e Close Close操作的区域阈值为 50000 像素。

5. 结论和未来工作

本文提出了一种基于多阈值的形态学方法,从光学远程感知图像中提取沿海线特征。传统的阈值方法对于图像分割简单而有效。但是,它将导致物体的阴影、弱散射植被和黑暗建筑物的任何错误划分。由几个形态学操作符同时提出两个定义,区域距离和最小路径,建议的方法被证明比传统的阈值方法具有更准确的结果,通过实验验证。

在建议的方法中使用多个阈值时,如何自适应地确定阈值是需要解决的另一个重要方面。适当的阈值选择将提供优化的结果(中川,1979年;王,1984年)。

由于雷达远程感知图像中水区与陆地之间的明显比较,光学图像和SAR图像的数据融合方法可用于提取沿海线特征,从而综合了各种数据的优势,可显著提高结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值