前言
如标题所示,首先楼主是23届毕业的,正常来说这帖子也应该是23年就写的,但为什么到了24年4月份才开始码字呢。简而言之,楼主工作的地方工作强度大,累了,加上懒。^-^。
回归正文,虽然楼主是去年毕业的,虽然现在讨论的热门话题已经从前些年的NLP跳转到大模型LLM了,但是对于在校的同学来说,市场对你们的要求没变,我之前所经历过的,我想你们也即将或者说正在经历,虽然24、25届看起来没有我们23届那么横尸片野^-^,异常惨淡^-^,但是市场给大家所设置的基准线还是一样的那么的高。所以,我希望我的经验能够给予同学们一些参考(实话是不知道哪天会被裁,先来当当答主好为副业打基础!)。另外,楼主也工作将近一年的时间,对于这个问题或许比刚毕业时的同学更有体感。最后,楼主是双非同学,所以我想我更能够和大多数的普通同学有相同经历和感受,能够和大家有更强的共鸣。
进入正文,校招如何成为大厂算法工程师?(双非硕版,详细非技术攻略)
楼主背景:
学历背景:双非本硕,真正的双非,本硕软科排名均300名外,本科计算机大类某专业(个人排名专业前30%,简称混子),硕士专业计科(个人排名专业前1%),可以称之为科班出身。
技术背景:
研究生背景(方向:自然语言处理、句法分析,一篇凑毕业资格的水文),
实习背景(百度NLP部门半年实习经验;面壁智能一年实习经验,面壁智能是清华刘知远老师底下做大模型的那一拨人的初创大模型公司,简历上有一篇在这里做的大模型研究性质的待投论文)
比赛背景(天池一个前1%,粤港澳大湾区某比赛No.5)
项目背景(某大厂挂名的4个NLP实战项目,简历上就写了俩)
特别说明一下,楼主是研一下那半年参与的这4个NLP实战项目,也是研一下完成了毕业资格的水文,并且取得毕业资格后,导师同意了实习,于是研二上一开学就去百度实习了,一直实习到研三下学期写毕业论文前为止,所以楼主整体实习时间有一年半。本质上研究生三年时间,有两年都在打工。
23届面试收获情况:阿里某团队LLM模型组,好未来LLM模型组,快手MMU,美团语音交互部、百度(大搜DQA组、大搜相关性组,还有三个百度其他的部门,百度是真亲人啊。)。这其中有些是面试通过了,但是压根就不打算去,所以没有走到offer的阶段。
楼主在这里多说一句,这里面大厂的offer大多都是春招阶段才拿到的;秋招阶段除了百度,没有其他任何大厂给面试机会,是的,是其他所有互联网大厂(byte ATJKM等)均没有给面试机会,而且我猜想百度给机会也可能是我有百度nlp实习的原因吧。虽然据我了解我身边大多985计算机强校的同学,23届秋招面试机会和前些年相比也变少很多,但是和双非同学比还是要好一些的。
虽然楼主秋招这么稀少的面试机会有可能是源于23年寒冬,也可能是源于本身水平较菜,但是我想说的是这其中必不可少的有学历原因,而且从楼主本身体感来看,学历是最主要的原因。互联网大厂或者说整个市场对于算法岗的学历门槛真的很高,双非同学真的会因此很受限,双非同学真的会少很多机会,甚至说没有什么机会。但是因为我这不是劝退贴,所以我这里粗略说一句看起来很生硬的鼓励的话^-^,如果你对自己有很高的要求和期盼,有足够强的自驱力想去证明自己或者说想赚高薪突破现有阶层的话,并且能够忍受孤独、能够不受环境影响、有不愿泯然众人矣的主观能动性的话,那么我觉得双非的你可以一试,互联网大厂算法岗不是没有可能,后面的内容就是我写给你们的。如果你没有以上的这些特点,那么楼主本人,仅楼主本人的建议是不要把大厂算法岗当做你找工作时唯一的目标,甚至可以说压根就不要考虑大厂的算法岗,去做开发后端前端、去体制内、去当老师、去做自己喜欢的事或者回家接手家业我觉得都会是更好的选择。
那么怎么做,校招才能成为大厂算法工程师呢?接下来是具体内容。以下内容仅为楼主本人的想法,不一定适用于所有人,不一定适用于所有学历层级的同学,不一定适用于所有算法岗位。另外此贴不是技术攻略贴,不讲非常细节的技术学习手段和技术路线,此贴主要是概念贴、方法论贴hhh。如果大家有什么疑问的话,首先请先明确下此文的针对人群背景,本文主要针对双非同学。如果已经明确了的话,还有疑问欢迎评论区或私信留言~
回归正题。因为楼主本身是做NLP的,所以这里均聚焦于NLP算法工程师来说。因为做算法的同学有本科、硕士、博士等,所以这里均聚焦于硕士来说。因为在校同学有研一、研二、研三甚至国外硕年限不同等不同阶段,所以这里会从最基础的研一开始说起。
为校招成为一名大厂算法工程师列好Todolist
在研究生阶段,在研二下开始秋招前,那么大概有两年的时间给同学们学习和沉淀。首先,这本质上是一个有ddl的排期,只不过这个周期可能是以年为单位的。那么既然这件事情是有ddl的,那么做好todolist就是非常重要的一个环节。
Todolist重要的主要原因如下:
1、规划安排不合理导致秋招前未达到大厂的基本技术要求标准。我身边就有这样的真实例子,我某个学弟研一一整年死磕在深度学习的“基础学习”上。因为没学过概率论,但是语言模型中又有概率论的知识点,所以专门大篇幅的去学概率论;因为没搞懂反向传播的数学逻辑,又专门去深追究其对应的数学理论。结局就是在他研二上的时候,打语音问我问题时,还在问我反向传播是怎么传的。虽然勤奋好学是好事,但是咱就是说不能钻牛角尖,或者说不能在某一件时间事情上耗费了大量时间精力,最终导致结果无法达成。我最害怕的点就是明明已经很努力了,但大多时间都是在自我感动,市场或者说面试官最后还不认可你的努力。所以希望大家多在网上看看现在市场认可什么,现在市场对应届同学的要求是什么,这一点我会在第 2 part稍微讲一下。
2、因为各种原因忘记了重要节点。这个原因是我本人亲身经历。虽然某些同学已经在实习了,但是因为实习强度太大,或者又因为什么其他原因变得很忙,从而忘记了暑期实习、秋招、春招等刚开始的时间点。对于双非同学来说,在暑期实习、秋招、春招刚开始的时候最好就要时刻关注并开始投递了,因为到正式批的时候,大家都开始投递,人非常多的时候就会变得非常被动了。投递的人少的时候,大厂可能还会给双非同学面试机会。人一旦多起来,名校的都面不完的时候,捞双非同学的机会就会少很多了。其次,如果你日常实习的地方没有转正机会的话,也需要时刻关注外面的机会,关注有没有其他地方可以日常实习转正的。总而言之,大家需要非常重视这些节点,先发制人的机会、捡漏的机会对于双非同学非常重要。因为真的很多时候未果不是因为你能力不行,而是你没有面试机会。
所以说,提早想清楚,提早做好粗略的todolist,是能够把控好节奏的一个诀窍,因为一旦钻进死胡同,一旦累起来或者忙起来,一拖再拖时间就过去了。
那么这个todolist要怎么做呢?首先,针对第1点,个人建议在研一这一年内就要打好基础,包括但不限于机器学习基础,深度学习基础,自然语言处理基础,linux基础,python基础,coding基础等等,本文就不细讲具体要补哪些知识点了,讲知识点的文章网上已经非常多了,不过后面本文第 2 part会讲一讲怎么做可以打好一个扎实的基础。简而言之,缺什么就补什么,这一年要怎么安排就因人而异了哈,反正希望大家研一结束的时候这些基础都能够很扎实。另外上面我所列举的这些基础都很重要,其他不同算法方向可能还有其对应的其他重要基础。额外强调一点,coding能力在这其中至关重要,coding包括但不限于写代码,debug,解决bug等。可能说句比较不恰当的话,自然语言理解的理论知识再扎实,但是不会写代码,实操起来也无济于事;但是你理论知识弱一些,不过会调包,代码能力还不错,至少也能够实操起来,能够有所产出。我见过很多同学甚至是在工作场合中,代码能力太弱,导致没有办法很好的完成一个项目。coding能力是作为一个程序员最基本也最重要的能力,你首先是一名程序员,然后才是一名算法工程师。
研二、研三甚至工作以后,都是你实操做项目的阶段。因为很现实,现在大厂算法工程师的标准很高,应届同学基本都得有很多项目才稳,项目包括但不限于论文、实习、比赛等。所以说应届同学不能想着说打好专业知识基础就够了,到公司里面才是实践的开始。现在的互联网大厂的要求可没这么低。所以话说回来,因为暑期实习是在研二的时候,所以最好在研一阶段就打好基础,研二在校或者在校外就开始做项目,开始实操了。
针对第2点的重要节点,每年实际情况都不一样,所以需要大家时刻保持关注。目前只能在小厂实习的同学,多关注关注大厂的日常实习招聘,日常实习因为缺人所以要求相对比较低。目前无法转正的同学,多关注关注有转正机会的地方。暑期、秋招、春招等一定要早早准备,早早投递,最好一开招聘通道后,就已经复习好并且投出去了,越早和你竞争的人越少。还有某些补录的机会,是招到人就停止,所以你越先看到,你的机会就越大。记住,除了自身打铁自身硬外,能够抓住机会也是背景不好的同学翻身的关键。
还有就是每个同学的实际情况不一样,并不是每个导师都同意实习,或者说能够实习的时间长短也不一样,大家得根据自身情况合理安排自己的规划,不要说导师不同意实习就开始不舒服,就开始摆烂;不要说导师压榨得太严重就没心思再学习了,然后结果都是研三一到发现啥也没学。导师不让实习,那就线上多参加比赛,多在学校发论文等等。导师不让实习,也可以多参加参加暑期实习的网面,积累经验,了解下大厂都问什么,自己缺什么,面试得好的话,加几个面试官微信,后面秋招也多一些机会不是。多自己想想办法,办法总是有的。
最后,我这里所讲的todolist可能比较粗且泛。所以希望大家能够根据自己自身的能力水平去合理安排计划和排期,网上有很多可以参考的学习计划;同时千万不要忘记重要的时间节点,可以提早列个备忘录来提醒自己,因为忙起来后真的很容易忘记。并且,学会做计划、学会做todolist,也是工作中提升效率的关键。
打好扎实的基础是成为优秀的算法工程师的根基
开门见山。大多学校的研究生老师讲课水,包括好学校^-^,所以想打好算法工程师所需的基础就得靠自己。网上虽然啥都有,想学肯定能学到真东西,但是质量参差不齐,如何高效的找到靠谱的教程呢?楼主提供两个自己所涉猎到的思路。
1、付费学习;找到靠谱的专业的机构或者平台,花钱学习打基础。楼主前面所说的4个大厂挂名的NLP项目就是楼主找的付费学习途径。因为楼主找的是实战项目营,所以是既教基础,又提供项目实战,相当于一举两得。但是相对不友好的点是,楼主在线共学习了7个月,属于学校的事和网上培训同时进行,比较辛苦;并且这种实战项目类型的课程门槛较高,需要有相对扎实的基础和不错的代码能力,不然光看看视频,不去实操代码,也是没有用的。建议基础不好的同学,先自行打基础(专业知识和代码能力),不要盲目去报这种实战项目课程;另外价格上万了比较昂贵,相当于投资了。所以说付费学习这个途径,各位同学看实际情况而定吧。另外强调一点,就算愿意花钱学习,千万也要看准机构和平台。楼主先前是认真对比过和考量过才决定花钱的。楼主当时主要看重的是这个项目营是大厂联合举办的,都是大厂自己的真实项目,同时还有大厂自己颁发的证书,且提供该厂的实习面试机会(虽然最后也没去这面试^-^),且我还私聊了某些nlp博主,博主说这个机构还不错等等,最后我才下定了决心。但是这个项目营目前好像已经没了,因为这个大厂的这部门好像没有了hh,所以就不说是哪个了哈。但是我想说付费学习打基础是一种相对高效且全面的可选方式,只要能找到靠谱的课程,我想能提供给你的帮助应该是事半功倍的。
2、在线免费学习;我想这个是大多同学自学的方式。那么学哪些课比较好且全面呢。我能给的建议目前是多看看关注量多的帖子,多看看大博主的学习路线贴,多关注关注优质的微信公众号、B站视频号等,然后根据自己的实际情况安排学习,或者说楼主什么时候有时间了,去收集整理一波。记住千万不要只学理论,理论和代码实现都有的课最好。代码能力真的非常重要。楼主推荐一些楼主自己看过的觉得还不错的网课吧。B站:斯坦福大学CS229、CS224n等系列,吴恩达深度学习deeplearning.ai,李宏毅老师的课,跟李沐学AI等等;中国大学mooc:浙江大学胡浩基机器学习,北京理工大学嵩天Python语言程序设计,北京大学曹健人工智能实践:Tensorflow笔记,北京大学郭炜程序设计与算法(二)算法基础等等。因为楼主很多NLP基础知识在付费那个途径下都学完了,所以网上的免费课程看得就没那么多了。但凭楼主混迹B站多年经验来看,搜索量高、播放量高、收藏量多的那些时长较长的课程大多都不错,可以从中进行选择。不过这些网课可能有些没有基础的练手项目,所以练手项目这块得好好找一下。像实操练手之类的话,B站上有很多天池的NLP实战系列分享视频,这种比赛相关的分享视频、前几名答辩视频,或者别人的论文分享、基础知识课程讲解等等都是很好的学习资料。
3、说完了算法知识层面上的基础,楼主这里想额外强调一个层面的基础 - 对于市场的充分了解也是至关重要的基础。
因为本文章的针对点是大厂算法工程师,所以一定要了解清楚大厂对算法工程师的要求是什么。比较好的一个参考点是面经,至少要准备到大多数你这方向的面经你都能够回答出来,其实从面经出发去补缺补漏是个不错的选择,但是要注意区分哪些是必须要补的,哪些是可选的。楼主先前有发过一个面经的帖子,可以给大家作参考个人NLP实习面经汇总_nlp面经-CSDN博客,然后知乎上、牛客上的面经也非常多。
说回大厂算法工程师,市场对于应届同学的要求或者说实习生的要求,我理解下来包含以下几点,1.扎实的算法基础,2.优秀的coding能力,3.相关的实操项目经历。前面两点我大概都提到一些,对于第三点,相关的实操项目经历,包括但不限于论文、实习、比赛等。凭个人的经验来看,大厂核心部门看重的是相关的实操项目经历加上扎实的算法基础和coding能力,缺一不可,但是项目经历似乎权重比较高。对于项目经历,我会在第 3 part展开讲讲。
总的来说,多在网上了解下市场的要求是非常重要的,这不仅可以避免你走入偏门,也可以让你对于大厂算法工程师所需要的能力有个全面的认知。记得多关注些优质公众号,多加些优秀的网友同学,多加些交流群等等。记住双非的校园里有80-90%的同学未来和你不是走得同一条路,几乎是没有人以互联网大厂算法工程师为目标的,所以先在网上多融入这个圈子会让你更有归属感,更有机会找到同行的伙伴。
决定性作用的实习、论文、比赛三件套
对于校招想进大厂做算法的同学来说,我想毫无疑问这三件套是最为重要的,抛开学校不谈,这三件套很大程度决定了你能否有面试的资格。原因很简单,放眼现在校招能进大厂的同学,应该很少有人这三者一样都不占。按照目前市场对校招同学的要求,这三件套几乎成了考察同学基本面的点。
那么,这三件套是必须都得有吗?理想情况,都有肯定最好。有且只有其二或其一也不是完全没有机会。从对普通院校同学的性价比来看的话,楼主觉得有含金量的实习 >= 有含金量的比赛 > 有含金量的论文。
1. 实习;楼主觉得这是最主要且机会较多的一个能丰富简历和提升能力的途径。并且实习过程中干的活可能是做业务,也可能是打比赛或发论文,所以说实习是可能存在多样性的,有一下子集齐三件套的机会。最重要的一点是,实习是有实习转正的机会的,这是比赛和论文单方面不太可能具备的,大家校招的最终目的就是为了找到好工作,如果你有幸在一个好公司,又有幸有转正机会并通过了转正答辩,那么这段实习便帮助你一步就到达了终点。而且,实习和真实中的工作是如出一辙的,可能唯一不一样的点在于活可能不够核心,活比较琐碎,且没有kpi的压力等,但是实习的确能够让你更快的适应工作节奏和工作场景。那么,如何找到实习呢?
能够找到实习的基础,或者说打比赛、发论文的基础都是必须要有扎实的专业知识积累和扎实的代码工程能力。这部分前面章节已经介绍了,这里便不赘述了。
那么怎么找实习呢?一个建议,当你觉得准备得相对充分了的话(注意你的准备时间长短,自行体会。),就开始投简历吧。你能去的最好的公司是哪家,你就去哪实习!这个好怎么定义呢?
简单来说,按照体量来分的话,大厂 > 中厂 > 小厂,创业公司另说。不同体量的公司的话,基本上是越大越好,因为其社会知名度更高,大厂面试官通常更认可,且更大的厂的分工会更明细,管理会更合理,相对小厂来说混乱程度相对低。同体量的公司的话,给大家个建议,去网上搜搜消息,可能能搜到相关的信息,比如脉脉、牛客等等,也可以通过网络找找该公司该部门的人,尝试联系联系吧。如果啥都搜不到的话,那就请自行决定吧。对于创业公司的话,得看行业和创业公司背景,像LLM大模型这个新兴方向,明星创业公司个人觉得不一定就比大厂弱。比如智谱、面壁智能等清华系明星创业公司。因为大模型是个比较新的赛道,新赛道的核心技术不一定全都掌握在大厂里面,目前个人看起来国内大厂除了百度文心、阿里通义外,其余相对知名的大模型基本都来自于创业公司(chatglm系列、cpm系列、baichuan系列等)。所以说,对于大模型这个赛道而言,明星创业公司的实习经历大厂也是很认可的。但其他赛道的话,如果这个创业公司没有很大的知名度和认可度的话,建议把创业公司当成小厂来看。
这里有几个细节。对于技术能力不错的双非背景同学来说的话,就算你去到了像大模型这些明星创业公司实习,最好也要有一段大厂的实习。但如果你想在创业公司转正留下来的话,那当我没说。因为双非背景的同学最怕被面试官拿来比较,如果有个至少211硕、大厂大模型相关实习背景的同学和你在比较的话,可能就算你实习的含金量更高,但是没有大厂实习背景可能也会成为你被淘汰的理由。所以说,如果你不是想毕业呆在某创业公司的话,建议一定要补充一段大厂实习,虽然你不一定会因为没有大厂实习而被pk掉,但是这种风险个人感觉是会存在的,所以说能规避就规避吧。并且你能去到这种明星创业公司实习的话,我想找段大厂实习应该也不难。
第二个细节,就算觉得自己很菜,准备好了的话大厂、中厂也都投投,面试这种东西很看当场的表现的,说不定你刚好有面试机会又刚好通过了呢,投投大厂也就是点几下鼠标的事情,建议都试试,但前提一定得准备充分啊。不过别面试了几个月大厂,未果,还在苦苦坚持只投大厂,还是要对自己的真实水平心里有数,不要太眼高手低。国内研究生大多最长就三年时间,你如果找实习都找了半年多还没找到合适的,那只能说你自己都没有想清楚。就像我说的,去你目前能去的最好的公司实习。如果你对自己的水平都做不到心里有数的话,那么我感觉难呀。如果你确实目前只能在小厂或者中厂实习的话,强烈建议多关注关注大厂的日常实习机会,多投递,有了中小厂的实习经验,也能够增加你进入大厂实习的机会的。话说回来,如果秋招时、春招时,你简历上仍然只有中小厂的算法实习的话,个人感觉进大厂也相对机会渺茫,最根本原因就是有大厂实习经历的竞争者太多了,双非+中小厂实习没有任何优势,大概率就是投递了没有面试机会。
第三个细节,如果你目前已经在大厂实习了,但是感觉转正机会小,或者说你不喜欢这个部门,不喜欢这个方向等,建议尽早换实习,别硬拖了。如果有幸找到一个你自己也满意,也有机会转正的地方的话,尽可能通过转正上岸吧,真的,实习转正是最简单、竞争最小的上岸方式了。
最后,投递渠道。常见的招聘软件:Boss直聘、猎聘等,其余渠道:牛客、脉脉、招聘公众号、算法微信群、算法钉钉群等,大厂官方投递渠道等。个人建议,只要是你能想到的渠道都去投递,因为掌握信息差,捡漏对于普通院校同学非常重要。
我知道,有些同学的老板或者导师确实压榨的离谱,完全不让实习。楼主表示同情,那么这种情况的话,就一定要多关注比赛和论文了!
2. 比赛;楼主觉得比赛的性价比还是很高的,既能够提升你实际解决问题的能力,有些比赛奖金还异常丰厚。而且比赛基本可以全程线上进行,整个周期较长,可以灵活安排自己的时间,但不排除某些比赛的决赛要求线下答辩。
比赛除了扎实的专业知识和代码能力外,可能还需要提早了解了解比赛相关的知识。楼主提供个思路,B站上面有天池等比赛的相关视频,可以去看看。天池、kaggle等大型比赛有些会开源前几名的代码和方案,多去偷一偷,学一学。多加些比赛交流群,多些朋友多些路。算法相关的比赛有很多,除了这种天池、kaggle这种比较知名且大型的比赛外,还有很多知名大厂举办的比赛(百度飞浆、腾讯微信等),知名会议举办的比赛(ccks、ccf等)、小比赛等等,类型是五花八门,可以多去网上了解了解。
楼主觉得比赛比较好的点在于,像天池这种大平台,上面有新人赛、学习赛等等,部分还提供GPU资源,既给了没经验的同学一个学习路线参考,也提供了资源支持,真的适合大多啥也没有(学习资料、算力)的双非同学们。而且,对于没有大多实战经验的同学们来说,比赛就是你们非常好的练手机会,不知道去哪找项目做的话,就在网上多打打比赛吧。有能力的话,研一就可以开始关注比赛,并且去付诸实践了。还有个楼主觉得很重要的点是,打比赛你可以认识非常多志同道合的网友和朋友,就像楼主先前说的,双非院校里面90%的同学和你的就业目标不一致,所以你很容易迷失在你学校的氛围和环境中,从而忽略了想进入大厂做算法的目标。但是打比赛认识到的同学们或者工作人士,有很多和你是一个圈子的,你大概率可以获得不错的认同感,对于大多同学来说,我想有志同道合的人的陪伴可以很好的帮你坚定你的最终目标。说不定还能认识一些大佬,还可以带飞自己呢。
3. 论文;楼主没有顶会,所以就不给写论文的经验了。但是楼主知道一点,大厂对于论文,基本只有顶会或者顶刊有吸引力,就nlp领域来讲,基本只看ccf的顶会。如果你的导师自己都没有发过顶会,那么你最好别指望他能够带你发顶会!赶快自己去规划自己的时间吧,不要信导师的饼。没有顶会的老师带着你,或者你自己一个人努力,想要在学校发一篇顶会,个人觉得这件事情的投入产出非常不成正比,未果的风险很大。去实习的地方发论文倒还是一个比较现实的选择。
现在有很多声音说没有顶会就别考虑大厂算法岗了。那么楼主的看法是,确实有很多公司或者部门卡顶会,像小红书、米哈游等公司,像某些大厂的算法研究岗等,现在大厂核心的大模型岗很多也卡顶会。如果你的目标只包含这样的公司或者岗位的话,那么你确实需要考虑去发顶会论文。但是如果你的目标是进入大厂做一名算法工程师的话,那么顶会倒也不是必备选项,大多业务岗对于顶会没有是没有明确要求的。最后,论文这种事情,如果你没有很有经验的人带你的话,想一次就中感觉真的很难。所以说一定得考虑好你的投入产出比,一篇在投的论文是没有那么大的含金量的。
一些其他细则
这里就想到啥就慢慢补充啥吧。
1、在公司用gpt4查东西真的很香,如果各位同学有chatgpt、gpt4等接口的话,有很多琐碎的知识点或者小事查一查就能够解决,确实省掉了很多查csdn的时间^-^。
2、现在大模型确实是大风口,大厂人才缺口蛮大的,相关岗位也很多。如果同学们有机会走大模型路线的话,可以尝试一下,我想这种缺口大的方向,如果双非同学有相关实习或论文经验的话,可能找工作会相对更有机会一些,薪资也相对更优渥,不过工作强度真的很大!
如果各位有什么疑问或者想法的话,欢迎评论区或者私信留言,希望楼主的博客能够给予大家一些参考或者帮助,希望能够在大厂里面见到更多普通院校的同学们的身影。各位加油,未来可期。
后续有时间的话,楼主可能会日常分享点大模型相关paper的解读。欢迎继续关注。
最后封面贴一张梦开始的地方吧^-^