Prompt工程论文:基于大语言模型的多智能体协作系统的扩展

论文地址:https://arxiv.org/pdf/2406.07155

摘要:近期在大语言模型驱动的自主智能体研究中取得的突破表明:多智能体协作在集体推理方面常常优于单个智能体的表现。受到神经网络扩展法则(即增加神经元可提升性能)的启发,本文探索了持续增加协作智能体是否能带来类似的性能提升。
在技术实现上,我们采用**有向无环图(DAG)**来组织智能体,构建了一个多智能体协作网络(MACNET),该网络通过拓扑方式编排智能体之间的交互式推理,以实现自主任务求解。
大量实验评估显示:该方法有效支持上千个智能体的协作,且不规则的拓扑结构往往优于规则结构。
我们进一步提出了一个“协作扩展法则”(Collaborative Scaling Law):随着智能体数量的扩展,系统整体性能呈现S 型的逻辑增长趋势,且协作智能体中出现的“协同涌现”现象早于传统神经网络的涌现行为。
我们推测,这可能是因为智能体数量的增加促进了它们在交互反思与精炼过程中更全面的多维度考量,进而产生更加完整与高质量的成果。

相关代码已开放,详见:https://github.com/OpenBMB/ChatDev/tree/macnet

研究问题:本文探讨了多智能体协作的潜力,提出了一种新的多智能体协作网络(M AC N ET),旨在通过协作推理来提升智能体的任务解决能力。尽管已有研究表明多智能体协作能够超越单个智能体的表现,但对于如何有效地扩展协作智能体的数量以及其对性能的影响仍缺乏深入研究。
创新点

  • 该研究提出了多代理协作网络(MACNET),通过有向无环图(DAG)组织代理,实现了高效的自主任务解决,显著提升了代理之间的协作效果。
    - 论文中提出的协作扩展定律,表明随着代理数量的增加,整体性能呈现逻辑增长模式,早于传统神经扩展的出现,揭示了多维度考虑对生成结果的影响。
    - 通过对不同拓扑结构的比较,研究表明不规则拓扑在大规模协作中优于规则拓扑,推动了多代理系统的设计与应用。

研究方法

本文提出了一种新颖的多智能体协作框架,MACNET,具体方法如下:

  1. 网络构建:MACN
    ET通过有向无环图(DAG)组织智能体,确保信息流动的单向性,避免信息回流。
    G = ( V , E ) V = { v i ∣ i ∈ I } E = { ⟨ v i , v j ⟩ ∣ i , j ∈ I ∧ i ≠ j } \mathcal{G}=( \mathcal{V}, \mathcal{E} ) \quad\mathcal{V}=\{v_{i} | i \in I \} \quad\mathcal{E}=\{\langle v_{i}, v_{j} \rangle| i, j \in I \wedge i \neq j \} G=(V,E)V={viiI}E={⟨vi,vji,jIi=j}
    在这里插入图片描述

  2. 智能体角色分配:在网络中,智能体被分为监督评论者和合规参与者,分别负责发出指令和提供特定的成果。此分工促进了智能体的专业化和有效的任务解决。

  3. 交互推理:智能体在预定的拓扑顺序中进行交互,每一轮由两个相邻的智能体对先前的成果进行细化,这样可以有效抑制上下文的爆炸。

  4. 记忆控制:为避免上下文爆炸,采用短期和长期记忆机制,确保智能体在交互中能够有效地进行上下文感知的决策。

结果与分析

实验结果表明,M AC N ET在多个任务上均优于基线方法,具体结果如下:

  1. 性能比较:在MMLU、HumanEval等数据集上,MACNET的表现显著优于其他方法,尤其是在软件开发和创意写作任务中表现突出。
    在这里插入图片描述

  2. 拓扑结构的影响:不同的拓扑结构对任务的适应性不同,链结构在软件开发中表现最佳,而树结构在创意写作中表现更佳。实验结果显示,较高的交互密度与更好的平均性能相关。

  3. 协作扩展法则:随着智能体数量的增加,性能提升呈现出逻辑增长模式,表明协作智能体的扩展能够有效提升整体性能。

在这里插入图片描述

总体结论

本文提出的MACNET框架通过有向无环图有效组织了多智能体的协作推理,实验结果表明,该方法在支持超过千个智能体的协作中表现优异,且不规则拓扑的性能优于规则拓扑。研究揭示了协作扩展法则,指出智能体的扩展能够更早地引发协作涌现,未来的研究可进一步探索这一方法在更复杂任务中的应用潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值