初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。
性质:
单位矩阵交换ij两行的得到Pij,Pij*A得到的矩阵是交换A的ij两行得到的矩阵
单位矩阵交换ij两行的得到Pij,A*Pij得到的矩阵为交换A的ij两列得到的矩阵
单位矩阵第i行乘以常数k得到初等方阵Di(k),Di(k)*B为B的第i行乘以k得到的新矩阵;
单位矩阵第i行乘以常数k得到初等方阵Di(k),B*Di(k)为B的第i列乘以k得到的新矩阵;
将单位矩阵的第i行的k倍加到第j行得到初等方阵Pij(k),Pij(k)*C得到的是矩阵C的第i行的k倍加到第j行得到的矩阵;
将单位矩阵的第i列的k倍加到第j列得到初等方阵Pij(k),C*Pij(k)得到的是矩阵C的第i列的k倍加到第j列得到的矩阵
注:单位矩阵某一行或某一列乘以同一个数,初等矩阵的变化相同,同样,交换ij行和交换ij列效果也相同,因此在第二条中,都是根据单位矩阵行的变化确定矩阵A或B的变化。当然,初等矩阵一样,但位于原矩阵不同侧时,最后的结果还是不同的
例:
则
但将第i行乘以某个数后加到第j行,与将第i列乘以某个数后加到第j列,初等矩阵的变化不同,因此要做区分。至于到底是看矩阵的行变化还是列变化,只要开初等矩阵在原矩阵的哪边就行,在左边,则为行变化,在右边,则为列变化
例
既可以看作是第一列加到第三列,也可以是第三行加到第一行
如果是DB,那么就是把B的第三行加到第一行,如果是BD,那么就是把B的第一列加到第三列。