初等矩阵

初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。

性质:

单位矩阵交换ij两的得到Pij,Pij*A得到的矩阵是交换A的ij两得到的矩阵

单位矩阵交换ij两的得到Pij,A*Pij得到的矩阵为交换A的ij两得到的矩阵

 

单位矩阵第i乘以常数k得到初等方阵Di(k),Di(k)*B为B的第i行乘以k得到的新矩阵;

单位矩阵第i乘以常数k得到初等方阵Di(k),B*Di(k)为B的第i列乘以k得到的新矩阵;

 

将单位矩阵的第i的k倍加到第j得到初等方阵Pij(k),Pij(k)*C得到的是矩阵C的第i行的k倍加到第j行得到的矩阵;

将单位矩阵的第i的k倍加到第j得到初等方阵Pij(k),C*Pij(k)得到的是矩阵C的第i列的k倍加到第j列得到的矩阵

注:单位矩阵某一行或某一列乘以同一个数,初等矩阵的变化相同,同样,交换ij行和交换ij列效果也相同,因此在第二条中,都是根据单位矩阵行的变化确定矩阵A或B的变化。当然,初等矩阵一样,但位于原矩阵不同侧时,最后的结果还是不同的

例:

D=\begin{bmatrix} 2 &0 &0 \\ 0 &1 & 0\\ 0 & 0 & 1 \end{bmatrix}

B=\begin{bmatrix} 1 & 1 &1 \\ 1 & 1 &1 \\ 1 & 1 & 1 \end{bmatrix}

DB=\begin{bmatrix} 2 & 2 &2 \\ 1 & 1 &1 \\ 1 & 1 & 1 \end{bmatrix} ,BD=\begin{bmatrix} 2 & 1 &1 \\ 2 & 1 &1 \\ 2 & 1 &1 \end{bmatrix}

但将第i行乘以某个数后加到第j行,与将第i列乘以某个数后加到第j列,初等矩阵的变化不同,因此要做区分。至于到底是看矩阵的行变化还是列变化,只要开初等矩阵在原矩阵的哪边就行,在左边,则为行变化,在右边,则为列变化

D=\begin{bmatrix} 1 & 0 &1 \\ 0 &1 &0 \\ 0 &0 & 1 \end{bmatrix}

既可以看作是第一列加到第三列,也可以是第三行加到第一行

如果是DB,那么就是把B的第三行加到第一行,如果是BD,那么就是把B的第一列加到第三列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值