对弧长的曲线积分(第一类曲线积分)

本文介绍了一种计算曲线形物体质量的方法,通过将曲线分割成无数小段,并使用直角三角形模型,结合密度方程f(x,y)进行积分运算。特别地,当密度为常数1时,该方法可用于计算曲线的弧长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

求曲线形物体的质量时,可以把曲线切成无数小段,每一段上任取一点的密度作为整个小段的密度,且每一段看作是直角三角形的斜边,而直角边则是x和y上的变化量。设密度方程为f(x,y),x=φ(t),y=ψ(t),t取值范围为(α,β),则求质量的公式为:

特别的,当密度公式永远为1时,公式求得的结果为曲线弧长

 

有时,给出的式子不是参数方程或者难以转化为参数方程时,可以直接把xy中的某一个定为参数,如y=φ(x),则积分式子变为

若f(x,y)关于y=x对称,那么交换xy,值依然不变

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值