《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
引言
最近很多小伙伴问我,YOLOv8在进行目标检测模型训练时,在没有指定优化器的情况下,训练默认使用的优化器到底是什么呢?针对这个问题,下面就来详细的解释说明一下。
模型训练
方式1:直接指定优化器
在使用YOLOv8训练目标检测模型的时候,我们可以直接指定优化器类型,即optimizer
参数,代码如下:
model = YOLO('yolov8n.pt')
model.train(data='data.yaml',epochs=200,batch=8,optimizer='SGD')
支持的optimizer类型包括: SGD, Adam, AdamW, NAdam, RAdam, RMSProp
。
在这种情况下,训练使用的优化器就是我们指定的优化器。
方式2:不指定优化器
训练时我们也可以不指定优化器,直接开始训练,代码如下:
model = YOLO('yolov8n.pt')
model.train(data='data.yaml',epochs=200,batch=8)
可以看出,这里没有指定optimizer
参数。此时从源码的默认参数配置文件我们可以看到,optimizer使用的默认值auto
,如下所示:
那这个时候训练到底使用的是什么优化器呢?下面我们一起看下源码到底是怎么指定的。
在ultralytics/engine/trainer.py
文件中有个build_optimizer
函数,用于设定优化器的,如下图:
如果optimizer为auto的情况下,其中的代码片段如下:
判断核心就是途中框出的这行代码:
name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
从代码中可以看出,当iterations
参数大于10000
的时候,使用"SGD"
优化器,反之则使用"AdamW"
优化器。
也就是说,在不指定优化器的情况下,模型只会使用"SGD"
和"AdamW"
这两种优化器之中的一种。不会使用其他的优化器类型。
想要知道最终到底使用的是哪个优化器,我们还需要知道,迭代次数iterations
是如何计算的。源码依然在ultralytics/engine/trainer.py
文件中,如下图:
iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
其中:
len(self.train_loader.dataset)
:表示训练使用的图片数量;
self.batch_size
:表示训练指定的batch大小;
self.args.nbs
:根据defult.yaml参数配置文件,默认值为64
;
self.epochs
:为指定的训练轮数;
math.ceil
:表示小数向上取整。
因此,
如果 self.batch_size小于64,则iterations = (训练图片数÷64 ×训练轮数);
如果 self.batch_size大于64,则 iterations = (训练图片数÷batch_size × 训练轮数);
举例:
如果训练时设定参数如下:
model = YOLO('yolov8n.pt')
model.train(data='data.yaml',epochs=200,batch=8)
训练图片数假设2000张。则:iterations = 2000÷64×200=6250.
此时iterations 小于10000,此时使用的应该是"AdamW"
优化器。
其他情况,也可以通过此方法进行判断。
总结
这篇文章主要介绍了YOLOv8在不指定优化器进行训练时,使用的优化器只会是"SGD"
和"AdamW"
这两种优化器之中的一种。然后如何通过计算iterations ,得到模型在这种情况下到底使用的是哪种优化器。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!