零样本分割模型:FastSAM【Fast Segment Anything】

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

FastSAM,由中国科学院,中国科学院大学,Objecteye Inc.,武汉人工智能研究所

1. FastSAM结构

在这里插入图片描述

1.1. 全实例分割阶段

  • 使用YOLOv8检测主干,其中YOLACT原则应用于例如分割,即YOLOv 8-seg。
  • 它首先通过骨干网络和特征金字塔网络(FPN)从图像中提取特征。
  • 检测分支输出类别和边界框,而分割分支输出k个原型(FastSAM中默认为32)沿着k个掩码系数。
  • 分割和检测任务是并行计算的。
  • 分割分支输入高分辨率特征图。该贴图通过卷积层进行处理,放大,然后通过另外两个卷积层以输出掩码。
  • 与检测头的分类分支类似,掩模系数的范围在-1到1之间。实例分割的结果是通过将模板系数与原型相乘,然后将它们相加得到的。

原型和掩码系数为快速引导提供了大量可扩展性。此YOLOv 8-seg方法用于所有实例分割阶段。

1.2.引导提示阶段

  1. 点提示:与SAM类似,前景/背景点可以作为提示。
  2. 框提示:目的是通过所选框识别具有最高IoU分数的掩码,从而选择感兴趣的对象。
  3. 文本提示:如上所示,使用CLIP模型提取文本的相应文本嵌入。然后确定相应的图像嵌入,并使用相似性度量将其与每个掩模的固有特征相匹配。然后选择与文本提示的图像嵌入具有最高相似性分数的掩码。

1.3.数据

  • 只有SAM使用的所有SA-1B数据集的1/50用于训练FastSAM模型。

2.结果

2.1.运行结果对比

在这里插入图片描述

虽然FastSAM生成了相对令人满意的结果,如图所示,FastSAM在速度方面在所有提示数字上都超过了SAM。此外,FastSAM的运行速度不会随着提示而改变。

2.2.零样本边缘检测

在这里插入图片描述

FastSAM的参数明显较少(仅68M),它生成的边缘图一般都很好。

在这里插入图片描述

FastSAM与SAM具有相似的性能,特别是更高的R50和更低的AP。

2.3.零拍摄对象提示分割

在这里插入图片描述
在这里插入图片描述

  • 虽然其他方法都是有监督的方法,但FastSAM和SAM实现了完全零样本分割。
  • FastSAM和SAM在AR@10精度下表现不佳。然而,在AR@1000中,FastSAM显著优于OLN [17]。

FastSAM大大超过SAM的计算最密集的模型SAM-HE64,超过5%。

  • 然而,与在LVIS数据集上训练的ViTDet-H相比,它的性能不足。

在这里插入图片描述

同样,FastSAM的掩码提示生成在Recall上相对较低。

2.4.零样本实例分割

在这里插入图片描述

在这项任务中,FastSAM未能实现高AP。

在这里插入图片描述

但定性地说,FastSAM仍然可以根据文本提示很好地分割对象。

2.5.现实世界的应用

在这里插入图片描述

  • 图7:通过前景/背景点(分别为FastSAM点中的黄色和洋红点)或框引导选择,FastSAM可以在准确的缺陷区域上进行分割。
  • 图8:FastSAM在Everything模式下与SAM只有很小的区别,因为它分割了更少的与任务无关的背景对象。

在这里插入图片描述

  • 图9:FastSAM在分割规则形状物体方面表现良好,但与SAM相比,分割出的与阴影相关的区域较少。
  • 图10:在某些图像上,FastSAM甚至可以为大型物体生成更好的遮罩。

2.6.失效方面

在这里插入图片描述

  • 低质量的小尺寸分割掩模具有大的置信度分数。
  • 一些微小物体的掩模往往位于广场附近。

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值