一、本文介绍
本文记录的是基于U-Net V2的YOLOv11目标检测改进方法研究。本文利用U-Net V2
替换YOLOv11
的骨干网络,UNet V2
通过其独特的语义和细节融合模块(SDI),能够为骨干网络提供更丰富的特征表示。并且其中的注意力模块可以使网络聚焦于图像中与任务相关的区域,增强对关键区域特征的提取,进而提高模型精度。本文配置了原论文中pvt_v2_b0
、pvt_v2_b1
、pvt_v2_b2
、pvt_v2_b3
、pvt_v2_b4
和pvt_v2_b5
六种模型,以满足不同的需求。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进