YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块

一、本文介绍

本文记录的是基于StarNet的YOLOv11轻量化改进方法研究StarNet设计简洁,没有复杂的设计和精细调整的超参数,仅是一个 4 阶段的分层架构。并且其中星操作能够在低维空间计算的同时考虑极高维的特征这一特性,进而提高模型精度。本文在替换骨干网络中配置了原论文中的starnet_s050starnet_s100starnet_s150starnet_s1starnet_s2starnet_s3starnet_s4七种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 10.9M 28.7GFLOPs 2.4ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### YOLOv11 轻量化优化技术及其改进 YOLO系列的目标检测模型不断演进,在保持高性能的同时追求更高效的计算资源利用。对于YOLOv11而言,轻量化改进主要集中在以下几个方面: #### 一、网络架构精简 为了提高效率并减少参数数量,采用了更加紧凑的骨干网设计。通过引入深度可分离卷积(Depthwise Separable Convolutions),可以在不显著降低精度的情况下大幅削减运算次数和内存占用[^1]。 ```python import torch.nn as nn class DepthWiseConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DepthWiseConv, self).__init__() self.depth_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels) self.point_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) def forward(self, x): x = self.depth_conv(x) x = self.point_conv(x) return x ``` #### 二、特征金字塔网络(FPN)增强 FPN结构被进一步优化以更好地融合不同尺度的信息。这不仅有助于提升小目标检测效果,而且能够有效控制额外带来的计算开销。具体来说,采用自顶向下的路径聚合机制以及横向连接来加强多层之间的信息交流[^3]。 #### 三、注意力机制集成 引入通道注意模块(CAM) 和空间注意模块(SAM),使得模型可以自动学习到哪些区域或通道更重要,从而动态调整权重分配给更重要的部分,实现更好的性能表现同时减少了不必要的冗余计算。 #### 四、训练策略调优 除了上述针对模型本身的改动外,还对训练过程进行了精心设计。比如使用混合精度训练(Mixed Precision Training),它允许在不影响最终结果的前提下加快收敛速度;另外也探索了多种数据增强方式如Mosaic Augmentation等,这些都有助于构建一个既快速又精准的小型化版本YOLOv11对象探测器[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值