一、本文介绍
本文记录的是利用 DEConv
模块优化 YOLOv12
的目标检测网络模型。
DEConv
(Detail-Enhanced Convolution,细节增强卷积)的设计旨在,解决 YOLOv12
目标检测网络中传统普通卷积缺乏目标细节相关先验、对小目标边缘、目标与背景边界等关键细节捕捉能力不足的问题,同时避免引入额外参数量与计算开销,以适配 YOLOv12
对实时推理性能与检测精度的双重需求。
专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进