YOLOv12改进策略【卷积层】| DEConv: 强度信息与梯度特征融合的细节增强 适用于小目标与细节目标检测任务

一、本文介绍

本文记录的是利用 DEConv 模块优化 YOLOv12 的目标检测网络模型

DEConv(Detail-Enhanced Convolution,细节增强卷积)的设计旨在,解决 YOLOv12 目标检测网络中传统普通卷积缺乏目标细节相关先验、对小目标边缘、目标与背景边界等关键细节捕捉能力不足的问题,同时避免引入额外参数量与计算开销,以适配 YOLOv12 对实时推理性能与检测精度的双重需求。


专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

以下是一个示例代码,展示了如何在CNN的pooling层后加入SENet模块,并通过convdeconv特征融合: ```python import torch.nn as nn class SENet(nn.Module): def __init__(self, in_channels, reduction=16): super(SENet, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction, in_channels, kernel_size=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.avg_pool(x) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) return x * out class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() # Define your CNN layers here self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # Add SENet module self.senet = SENet(in_channels=64) # Define your conv and deconv layers here self.conv = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.deconv = nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2) def forward(self, x): x = self.pool(x) x = self.senet(x) x = self.conv(x) x = self.deconv(x) return x ``` 在这个示例代码中,我们首先定义了一个SENet类,它接受输入信道数和降维因子作为参数。在forward方法中,我们将输入数据进行平均池化,然后通过两个卷积层进行特征压缩和特征扩张,并使用Sigmoid函数对特征图进行缩放,最后将原始特征图和缩放后的特征图相乘。这个SENet模块可以插入到CNN的任意层后面,以增强CNN的特征表示能力。 在MyModel中,我们首先定义了CNN的一些层,然后在pooling层后面加入了SENet模块。最后我们定义了conv和deconv层,以实现特征融合。在forward方法中,我们首先进行pooling操作,然后通过SENet模块进行特征缩放,然后进行conv和deconv操作,最终输出特征融合后的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值