YOLOv10改进策略【卷积层】| DEConv: 强度信息与梯度特征融合的细节增强 适用于小目标与细节目标检测任务

一、本文介绍

本文记录的是利用 DEConv 模块优化 YOLOv10 的目标检测网络模型

DEConv(Detail-Enhanced Convolution,细节增强卷积)的设计旨在,解决 YOLOv10 目标检测网络中传统普通卷积缺乏目标细节相关先验、对小目标边缘、目标与背景边界等关键细节捕捉能力不足的问题,同时避免引入额外参数量与计算开销,以适配 YOLOv10 对实时推理性能与检测精度的双重需求。


专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值