假设我们给定了一个数组
我们可以将这个数组用m-by-n matrix转换成矩阵
其中 i(m) 代表rows(行) j(n) 代表columns(列)
代表第一行第一列,
代表第五行第六列
将其转换完我们将会得到一个矩阵(M):
如果我们现在有这样一个矩阵M,并有m个样本,通常矩阵中一行为一个样本,一行中不同的值代表这个样本不同的参数。Ex. M矩阵中的第一行代表房屋#1,第一行第一列代表房屋的地址,第一行第二列代表房屋的面积......
从上面我们可以得出 Where
并且这个矩阵的大小是m*n(行*列)
并将其套入之前的线性回归模型(线性回归模型)我们可以得出:
其中
矩阵转换
假设我们有一个矩阵
那么A的矩阵转换
Residual Sum of Squares
RSS是成本函数的一种形式(成本函数)
是
的列向量,比如:
,
为实际值,
为预测值
为
的转置,是一个
的行向量,比如:
是两者的点乘,