Tabular Data → Matrix → Formula

假设我们给定了一个数组\left \{ a_{1,1}, a_{1,2}, a_{1,3}, a_{2,1}, a_{2,2},... \right \}

我们可以将这个数组用m-by-n matrix转换成矩阵

a_{i,j}

其中 i(m) 代表rows(行) j(n) 代表columns(列)

a_{1,1} 代表第一行第一列,a_{5,6}代表第五行第六列

将其转换完我们将会得到一个矩阵(M):\begin{bmatrix} a_{1,1}& a_{1,2}& a_{1,3} &...\\ a_{2,1} &a_{2,2} &a_{2,3}&... \\ a_{3,1} &a_{3,2} &a_{3,3}&...\\ ... &... & ...&... \end{bmatrix}

如果我们现在有这样一个矩阵M,并有m个样本,通常矩阵中一行为一个样本,一行中不同的值代表这个样本不同的参数。Ex. M矩阵中的第一行代表房屋#1,第一行第一列代表房屋的地址,第一行第二列代表房屋的面积......

从上面我们可以得出   M=\left \{ (x_1, y_1) | 1 \leqslant i \leqslant m\right \} Where x_i = \left \{ x_{i,1}, x_{i,2}, x_{i,3},...,x_{i,n} \right \}并且这个矩阵的大小是m*n(行*列)

并将其套入之前的线性回归模型(线性回归模型)我们可以得出: w_{1,0}x_{1,0}+w_{1,2}x_{1,2}+w_{1,2}x_{1,2}+...+w_{1,n}x_{1,n} = \sum_{j=0}^{n}w_{1,j}x_{1,j}

其中w=\beta

矩阵转换

假设我们有一个矩阵A=\begin{bmatrix} a\\ b\\ c\\ d\\ \end{bmatrix}

那么A的矩阵转换 A^T=\begin{bmatrix} a& b& c& d \end{bmatrix}

(A + B)^T=A^T+B^T

(AB)^T=B^TA^T

A^T*A=\sum_{i}^{}a_i^2

(cA)^T=cA^T

Residual Sum of Squares

RSS是成本函数的一种形式(成本函数)

RSS=\epsilon^T\cdot\epsilon=\sum_{i=1}^{m}(\epsilon_i)^2=\sum_{i=1}^{m}(y_i-wx_i)^2

\epsilon 是m*1的列向量,比如:\epsilon =\begin{pmatrix} e_1\\ e_2\\ .\\ .\\ .\\ e_m \end{pmatrix}

e_i=y_i-\widehat{y}_iy_i为实际值,\widehat{y}_i 为预测值

\epsilon ^T\epsilon的转置,是一个1*m的行向量,比如:\epsilon =\begin{pmatrix} e_1& e_2& . . .& e_m \end{pmatrix}

\epsilon^T\cdot\epsilon 是两者的点乘,\epsilon^T\cdot\epsilon = e_1^2+e_2^2+...+e_m^2=\sum_{i=1}^{m}(\epsilon_i)^2=\sum_{i=1}^{m}(y_i-wx_i)^2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值