《StereoDRNet: Dilated Residual StereoNet》

这篇文章的效果很好,但是没有开源代码。

1. 研究问题

基于立体深度估计的场景三维重建系统中,现有的立体深度算法(如PSMNet,GCNet)估计的视差图导致重建表面几何不一致的问题(左右视差不一致,导致融合后表面法向量误差较大),以及代价过滤模块计算量大的问题。

2. 研究方法

StereoDRNet(Dilated Residual StereoNet)提出一种新的视差细化网络,预测左右一致视差图和遮挡图,有助于产生几何一致性的重建。提出使用多尺度3D空洞卷积(ASPP)进行代价过滤,产生了更好的过滤效果,而且减少了一半的计算量。另外,使用Vortex Pooling 进行特征提取,产生了比SPP更好的效果。

2.1 特征提取

首先使用卷积块和残差块提取局部特征,然后使用 Vortex Pooling [24] 捕获全局上下文,相比于SPP,Vortex Pooling 使用空洞卷积扩大感受野,提高了网络的表征能力。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.2 代价过滤

一般成本量构建方法有两种:

  1. 串联左右特征
  2. 左右特征点积

文章使用简单地减法构建成本量,即(左图特征 - 右图特征),(右图特征 - 左图特征),也很有效。

虽然简单的 argmin 原则应该得到正确的局部最小值解,但是相关文献中已经多次表明,解具有多个局部最小值是很常见的。具有均匀或重复纹理的表面特别容易出现此问题。通过将成本过滤视为具有多个卷积和非线性激活的深度学习过程,我们试图解决这些歧义并找到正确的局部最小值

针对 PSMNet 和 GCNet 等网络中 3D成本过滤计算量大的问题,提出在宽度、高度和视差三个维度使用并行的多尺度3D空洞卷积,联合了多尺度信息,产生了更好的过滤效果,而且相比于PSMNet减少了近一半的计算量。

采用多次残差学习,预测了三个尺寸为原始的1/4大小的左右视差图,可以进行中间监督,最后一个视差图用于视差细化。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 视差回归

采用双线性插值将视差图放大到原始图像的大小,并采用soft argmax回归视差。
在这里插入图片描述

在这里插入图片描述

2.4 视差细化

为了使视差估计对遮挡和视图一致性具有鲁棒性,我们进一步优化估计。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 损失函数

在这里插入图片描述

3. 实验结果

训练:

  • 优化器:Adam, β 1 = 0.9 \beta_1=0.9 β1=0.9 β 2 = 0.999 \beta_2=0.999 β2=0.999
  • 数据预处理:颜色归一化。代码中使用了与ImageNet一样的颜色归一化。
__imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}
  • 图像剪裁:512x256
  • 批量:8
  • 损失函数超参数:w1 = 0.2、w2 = 0.4、w3 = 0.6、λ1 = 1.2 和 λ2 = 0.3

数据集:

  • SceneFlow
  • KITTI 2012
  • KITTI 2015
  • ETH3D

3.1 SceneFlow Dataset

在这里插入图片描述
在这里插入图片描述

3.2 KITTI Datasets

在这里插入图片描述
在这里插入图片描述

3.3 ETH3D Dataset

在这里插入图片描述

4. 结论

(1)StereoDRNet使用 Vortex Pooling 和 3D空洞卷积代价过滤 增加了感受野,捕获了更丰富的上下文信息,并减少了计算代价。此外,提出的视差细化网络利用了遮挡和视差一致性信息,产生了几何一致的视差图,获得了接近结构光的三维重建效果。
(2)所提出的方法在 KITTI 2012、KITTI 2015 和 ETH 3D 测试中取得了最先进的结果。

5. 启发

采用空洞卷积可以增加感受野,提取更多的上下文信息,从而减少了卷积层的使用,从而减少计算量。

参考文献

  1. Chen-Wei Xie, Hong-Yu Zhou, and JianxinWu. Vortex pooling: Improving context representation in semantic segmentation.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>