现控笔记(六)线性定常系统综合

性能指标的类型:

在这里插入图片描述

5.1反馈系统结构

反馈是系统设计的重要方式

• 输出反馈
– 经典控制理论用传递函数来描述系统的,只能对输出量进行一定改造用作反馈量。
– 即量测输出量,再由输出的测量值与给定的输入量进行比较后确定闭环系统的控制规律。

• 状态反馈
– 现代控制理论中用状态变量来描述系统特性,所以除了上述的反馈外,通常采用状态反馈,即利用系统的全部状态变量作为反馈量。

状态反馈:
设:u = Fv + Kx ( F = I时,u = Kx + v)
得到:x’ = (A+BK)x + Bv
可以通过调节K的值改变系统极点位置。

输出反馈:
设:u = Fv + Hy ( F = I时,u = Hy + v)
得到:x’ = (A+BHC)x + Bv
通过改变H的值改变系统极点位置。

对比K和H两个矩阵,可以发现K:rn 而 H:rm 由于m<n,则状态反馈可能会比输出反馈有更好的效果。

定理:
在这里插入图片描述

5.2 极点配置
在这里插入图片描述

极点配置算法:
在这里插入图片描述

注:状态反馈极点配置不影响系统的能控性,可能对系统的能观性产生影响。由于配置极点后可能发生零极点对消,故对能观性产生影响。

5.3 系统镇定问题

在这里插入图片描述

状态反馈可镇定条件:连续时间线性时不变系统可由状态反馈镇定,
当且仅当系统不能控部分为为渐近稳定。连续时间线性时不变系统可由状态反馈镇定的一个充分条件是系统完全能控。

状态反馈镇定算法:

在这里插入图片描述

5.5 状态观测器
有些状态变量不可测得,有些状态变量经过状态变换,并不与实际的物理量相对应,所以这个时候需要建立状态观测器对状态变量进行观测。

定理5.5.1 对于线性定常系统 x(A, B, C),状态观测器存在的充要条件是系统的不能观子空间为渐近稳定的。

定理5.5.2 若线性定常系统 x(A, B, C)完全能观,则其状态向量可由系统的输入u和输出y进行重构。

通过合理地选择G可以改变闭环系统的特征值,影响系统的特性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

设计反馈矩阵G:

在这里插入图片描述

设计定常系统观测器步骤:
(1)判别系统能观性;
(2)若系统能观,化为能观标准二形;
(3)计算det[sI-(A-GC)],与目的极点的特征多项式进行比较,对比参数,确定G’矩阵;
(4)求原来系统的观测反馈矩阵G=ToG’;
(5)得到观测器方程。
(6)画结构图。

5.6利用观测器实现状态反馈

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

闭环系统的基本特性:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sdhdwyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值