现控笔记(四):能控性和能观性

第3章线性控制系统的能控性和能观性

能控性:是控制作用u(t)支配系统的状态向量x(t)的能力;回答u(t) 能否使x(t)作任意转移的问题。
能观性:是系统的输出y(t)反映系统状态向量x(t)的能力,反映从外 部对系统内部的观测能力。回答能否通过y(t)的量测确定状态 x(t)的问题。

线性定常系统的能控性判别:
1.约旦标准型系统的能控性判别:
无重根时:
在这里插入图片描述

有重根时:
在这里插入图片描述

特殊情况:
在这里插入图片描述

※非奇异线性变换不改变系统的能控性
2.直接从(A, B)判别系统的能控性:
在这里插入图片描述

判断满秩的简单方法:

在这里插入图片描述

能观性:
由于能观测性所表示的是输出y(t) 反映状态向量x(t)的能力,与控制作用u(t)无直接关系,所以在分析能观测性问题时,可以不考虑控制作用的存在,只需从齐次状态方程和输出方程出发,如果对于任意给定的输入u(已知),在有限观测时间tf>t0,使得根据[t0, tf]期间的输出y(t)能唯一地确定系统在初始时刻的状态x(t0),则称状态x(t0)是能观的,若系统的每一个状态都是能观的,则称系统是状态完全能观的,或简称是能观的。

几点说明:
1.能观性表示的是输出y(t)反映状态向量x(t)的能力,而控制作用u(t)所引起的输出是可以计算的,所以分析系统能观性问题时看设u(t)≡0,这样只需要从齐次状态方程和输出方程出发,即分析系统(A, C)的能观性。

2.从输出方程y=Cx可以看出,如dimy=m=dimx=n,且C满秩则由y(t)求解x(t)是十分简单的,可用 x(t)=C-1y(t)

3.通常情况是m<n,为了从m维输出分量y(t)唯一地确定n个状态变量,必须在不同时刻多测量几组输出数据,因此观测时间必须满足tf≥t0的要求。

4.在定义中被把能观性定义为对初始状态的确定,是因为一旦确定了初始状态,即可根据系统的输入和状态方程解出任意t>t0时刻系统的瞬时状态。

能观性判别方法:
1.转成约旦标准型判断:
不含有重根:
在这里插入图片描述

含有重根:
在这里插入图片描述

特殊情况:

在这里插入图片描述

2.使用A,C矩阵判别:

在这里插入图片描述

3.4离散时间系统的能控性和能观性

能控性:
在这里插入图片描述

能观性:
在这里插入图片描述

3.6 对偶关系

对偶系统:
在这里插入图片描述

系统S1和S2是互为对偶的两个系统,则S1的能控性等价于S2的能观性,而S1的能观性等价于S2的能控性。换言之,若S1是状态完能控的(完全能观的)则S2就是状态完全能观的(状态完全能控的)。

3.8 线性系统的结构分解

1.按能控性分解:

在这里插入图片描述
在这里插入图片描述

性质:
(1)n1维子空间是能控的
(2)子系统的传递函数阵与原系统的传递函数阵相等
(c表示control控制)
在这里插入图片描述

2.按能观性分解
性质:
(1)n1子系统是能观的
(2)能观子系统的传递函数阵与原系统的传递函数阵相等
在这里插入图片描述

3.按能控能观性分解
在这里插入图片描述

3.9函数阵的实现问题
定义:对于线性定常系统,给定其传递函数阵W(s),若可以找到一状态空间表达式S(A,B,C,D) ,使下式成立C(sI−A)−1B+D = W(s)则称此状态空间表达式S为给定传递函数矩阵W(s)的一个实现。
在这里插入图片描述

(1)SISO系统可根据能控能观标准型实现列写。

(2)MIMO系统:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最小实现:

在这里插入图片描述
在这里插入图片描述

实现步骤:
在这里插入图片描述

3.10极性对消与能观能控性
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sdhdwyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值