引力势的球谐展开(从泰勒级数到勒让德多项式)

1.从泰勒展开到勒让德再到球谐函数

小质元对引力势引起的作用

1.1引力位的泰勒级数表达

引力位表达式为
V = G ∫ M 1 ρ d m V = G \int _ { M } \frac { 1 } { \rho } d m V=GMρ1dm
其中
ρ 2 = r 2 + R 2 − 2 R r cos ⁡ ψ = r 2 ( 1 + ( R r ) 2 − 2 R r cos ⁡ ψ ) \rho ^ { 2 } = r ^ { 2 } + R ^ { 2 } - 2 R r \cos \psi = r ^ { 2 } ( 1 + ( \frac { R } { r } ) ^ { 2 } - 2 \frac { R } { r } \cos \psi ) ρ2=r2+R22Rrcosψ=r2(1+(rR)22rRcosψ)

l = ( R r ) 2 − 2 R r cos ⁡ ψ l = ( \frac { R } { r } ) ^ { 2 } - 2 \frac { R } { r } \cos \psi l=(rR)22rRcosψ
则原来的距离倒数为
1 ρ = 1 r ( 1 + l ) − 1 2 \frac { 1 } { \rho } = \frac { 1 } { r } ( 1 + l ) ^ { - \frac { 1 } { 2 } } ρ1=r1(1+l)21
对其进行泰勒展开
f ( x ) = f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) { f ( x ) } = \frac { f ( x _ { 0 } ) } { 0 ! } + \frac { f ^ { \prime } ( x _ { 0 } ) } { 1 ! } ( x - x _ { 0 } ) + \frac { f ^ { \prime \prime } ( x _ { 0 } ) } { 2 ! } ( x - x _ { 0 } ) ^ { 2 } + \cdots +\frac { f ^ { ( n ) } ( x _ { 0 } ) } { n ! } ( x - x _ { 0 } ) ^ { n }+R_n(x) f(x)=0!f(x0)+1!f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)
1 ρ \frac{1}{\rho} ρ1 l = 0 l=0 l=0处展开得到
1 ρ = 1 r ( 1 + l ) − 1 2 = 1 r ( 1 − 1 2 l + 3 8 l 2 − 5 16 l 3 + ⋯   ) \frac { 1 } { \rho } = \frac { 1 } { r } ( 1 + l ) ^ { - \frac { 1 } { 2 } } = \frac { 1 } { r } ( 1 - \frac { 1 } { 2 } l + \frac { 3 } { 8 } l ^ { 2 } - \frac { 5 } { 1 6 } l ^ { 3 } + \cdots ) ρ1=r1(1+l)21=r1(121l+83l2165l3+)
引力位级数表达为
V = G r ∫ ( 1 − 1 2 l + 3 8 l 2 − 5 16 l 3 + ⋯   ) d m V = \frac { G } { r } \int ( 1 - \frac { 1 } { 2 } l + \frac { 3 } { 8 } l ^ { 2 } - \frac { 5 } { 1 6 } l ^ { 3 } + \cdots ) d m V=rG(121l+83l2165l3+)dm
l l l表达式代入得
V = G r ∫ ( 1 − 1 2 [ ( R r ) 2 − 2 R r cos ⁡ ψ ] + 3 8 [ ( R r ) 2 − 2 R r cos ⁡ ψ ] 2 − 5 16 [ ( R r ) 2 − 2 R r cos ⁡ ψ ] 3 + ⋯   ) d m V= \frac { G } { r } \int ( 1 - \frac { 1 } { 2 } \left[ ( \frac { R } { r } ) ^ { 2 } - 2 \frac { R } { r } \cos \psi \right] + \frac { 3 } { 8 } \left[ ( \frac { R } { r } ) ^ { 2 } - 2 \frac { R } { r } \cos \psi \right] ^ { 2 }- \frac { 5 } { 1 6 } \left[ ( \frac { R } { r } ) ^ { 2 } - 2 \frac { R } { r } \cos \psi \right] ^ { 3 } + \cdots ) d m V=rG(121[(rR)22rRcosψ]+83[(rR)22rRcosψ]2165[(rR)22rRcosψ]3+)dm

1.2 泰勒级数到勒让德多项式

按照 R r \frac{R}{r} rR整理得
V = v 0 + v 1 + v 2 + v 3 + ⋯ = ∑ i = 0 n v i V = v _ { 0 } + v _ { 1 } + v _ { 2 } + v _ { 3 } + \cdots = \sum _ { i = 0 } ^ { n } v _ { i } V=v0+v1+v2+v3+=i=0nvi
其中
v 0 = G r ∫ M d m v _ { 0 } = \frac { G } { r } \int _ { M } d m v0=rGMdm
v 1 = G r ∫ M R r cos ⁡ ψ d m v _ { 1 } = \frac { G } { r } \int _ { M } \frac { R } { r } \cos \psi d m v1=rGMrRcosψdm
v 2 = G r ∫ M ( R r ) 2 ( 3 2 cos ⁡ 2 ψ − 1 2 ) d m v _ { 2 } = \frac { G } { r } \int _ { M } ( \frac { R } { r } ) ^ { 2 } ( \frac { 3 } { 2 } \cos ^ { 2 } \psi - \frac { 1 } { 2 } ) d m v2=rGM(rR)2(23cos2ψ21)dm
当然,零阶项、一阶项、二阶项等的表达都有其实际的物理意义,此处暂不作展开。进行代换有
P 0 ( cos ⁡ ψ ) = 1 P _ { 0 } ( \cos \psi ) = 1 P0(cosψ)=1
P 1 ( cos ⁡ ψ ) = cos ⁡ ψ P _ { 1 } ( \cos \psi ) = \cos \psi P1(cosψ)=cosψ
P 2 ( cos ⁡ ψ ) = 3 2 cos ⁡ 2 ψ − 1 2 P _ { 2 } ( \cos \psi ) = \frac { 3 } { 2 } \cos ^ { 2 } \psi - \frac { 1 } { 2 } P2(cosψ)=23cos2ψ21
于是就有(类似)勒让德表达。直接给出 P n ( cos ⁡ ψ ) P _ { n } ( \cos \psi ) Pn(cosψ)一般表达式
P n ( cos ⁡ ψ ) = 1 2 n n ! d n ( cos ⁡ 2 ψ − 1 ) n d ( cos ⁡ ψ ) n P _ { n } ( \cos \psi ) = \frac { 1 } { 2 ^ { n } n ! } \frac { d ^ { n } ( \cos ^ { 2 } \psi - 1 ) ^ { n } } { d ( \cos \psi ) ^ { n } } Pn(cosψ)=2nn!1d(cosψ)ndn(cos2ψ1)n
当已知一阶项和二阶项时,有递推式
P n + 1 ( x ) = 2 n + 1 n + 1 x P n ( x ) − n n + 1 P n − 1 ( x ) , x = cos ⁡ ψ P _ { n + 1 } ( x ) = \frac { 2 n + 1 } { n + 1 } x P _ { n } ( x ) - \frac { n } { n + 1 } P _ { n - 1 } ( x ),x = \cos \psi Pn+1(x)=n+12n+1xPn(x)n+1nPn1(x),x=cosψ
于是,用勒让德公式表示 n \bm n n阶地球引力位公式
V n = G r ∫ ( R r ) n P n ( cos ⁡ ψ ) d m V _ { n } = \frac { G } { r } \int ( \frac { R } { r } ) ^ { n } P _ { n } ( \cos \psi ) d m Vn=rG(rR)nPn(cosψ)dm

1.3 勒让德多项式到缔合勒让德和球谐函数

由于 ψ \psi ψ角余弦是M点和S点的直角坐标的函数。也可以用球面三角学公式表示为两点的球面坐标函数,经过变换之后,即可得到 n n n阶重力位的计算公式
V n = 1 r n + 1 [ A n P n ( cos ⁡ θ ) + ∑ K = 1 n ( A n K cos ⁡ K λ + B n K sin ⁡ K λ ) P n K ( cos ⁡ θ ) ] V _ { n } = \frac { 1 } { r ^ { n + 1 } } \left[ A _ { n } P _ { n } ( \cos \theta ) + \sum _ { K = 1 } ^ { n } ( A _ { n } ^ { K } \cos K \lambda + B _ { n } ^ { K } \sin K \lambda ) P _ { n } ^ { K } ( \cos \theta ) \right] Vn=rn+11[AnPn(cosθ)+K=1n(AnKcosKλ+BnKsinKλ)PnK(cosθ)]
其中, θ \theta θ为极距, ϕ + θ = 90 ° \phi+\theta=90\degree ϕ+θ=90° P n ( cos ⁡ θ ) P_n(\cos\theta) Pn(cosθ)称为带球函数, P n K ( cos ⁡ θ ) P_n^K(\cos\theta) PnK(cosθ)称为缔合勒让德函数。
V = ∑ n = 0 ∞ V n = ∑ n = 0 ∞ 1 r n + 1 [ A n P n ( cos ⁡ θ ) + ∑ K = 1 n ( A n K cos ⁡ K λ + B n K sin ⁡ K λ ) P n K ( cos ⁡ θ ) ] V = \sum _ { n = 0 } ^ { \infty } V _ { n } = \sum _ { n = 0 } ^ { \infty } \frac { 1 } { r ^ { n + 1 } } \left[ A _ { n } P _ { n } ( \cos \theta ) + \sum _ { K = 1 } ^ { n } ( A _ { n } ^ { K } \cos K \lambda + B _ { n } ^ { K } \sin K \lambda ) P _ { n } ^ { K } ( \cos \theta ) \right] V=n=0Vn=n=0rn+11[AnPn(cosθ)+K=1n(AnKcosKλ+BnKsinKλ)PnK(cosθ)]
其中, cos ⁡ K λ P n K ( cos ⁡ θ ) \cos K\lambda P_n^K(\cos\theta) cosKλPnK(cosθ) sin ⁡ K λ P n K ( cos ⁡ θ ) \sin K\lambda P_n^K(\cos\theta) sinKλPnK(cosθ)称为缔合球函数。
K = n K=n K=n时称扇球函数, K ≠ n K \neq n K=n时称田球函数
带谐、扇谐和田谐

2.低阶项的物理意义

2.1零阶项

v 0 = G r ∫ M d m = G M r v _ { 0 } = \frac { G } { r } \int _ { M } d m = \frac { G M } { r } v0=rGMdm=rGM
解释和应用: v 0 v_0 v0就是把地球质量集中到地球质心处时的点的位。也就是说, 将地球看作为一个质点时,与其距离为𝑟点处的引力位为 v 0 v_0 v0

2.2一阶项

cos ⁡ ψ = R ⋅ r R r = x x m + y y m + z z m R r \cos \psi = \frac { \bm R \cdot \bm r } { R r } = \frac { x x _ { m } + y y _ { m } + z z _ { m } } { R r } cosψ=RrRr=Rrxxm+yym+zzm
v 1 = G r ∫ M R r cos ⁡ ψ d m = G r ∫ M R r x x m + y y m + z z m R r d m = G r 3 ∫ M ( x x m + y y m + z z m ) d m v _ { 1 } = \frac { G } { r } \int _ { M } \frac { R } { r } \cos \psi d m = \frac { G } { r } \int _ { M } ^ { }\frac{R}{r} \frac { x x _ { m } + y y _ { m } + z z _ { m } } { R r } d m = \frac { G } { r ^ { 3 } } \int _ { M } ( x x _ { m } + y y _ { m } + z z _ { m } ) d m v1=rGMrRcosψdm=rGMrRRrxxm+yym+zzmdm=r3GM(xxm+yym+zzm)dm
= G r 3 ( ∫ M x x m d m + ∫ M y y m d m + ∫ M z z m d m ) = \frac { G } { r ^ { 3 } } ( \int _ { M } ^ { } x x _ { m } d m + \int _ { M } ^ { } y y _ { m } d m + \int _ { M } ^ { } z z _ { m } d m ) =r3G(Mxxmdm+Myymdm+Mzzmdm)
物质质心坐标定义为
x 0 = ∫ M x m d m M , y 0 = ∫ M y m d m M , z 0 = ∫ M z m d m M x _ { 0 } = \frac { \int _ { M } ^ {} x _ { m } d m } { M } , y _ { 0 } = \frac { \int _ { M } ^ {} y _ { m } d m } { M } , z _ { 0 } = \frac { \int _ { M } ^ {} z _ { m } d m } { M } x0=MMxmdm,y0=MMymdm,z0=MMzmdm
因为坐标原点置于地球的质心,所以
v 1 = 0 v _ { 1 } = 0 v1=0
解释和应用: 卫星的三维位置 ( x , y , z ) (x,y,z) (x,y,z)是在地心坐标系下给出的。若卫星反演出的地球重力场的一阶项 v 1 ≠ 0 v _ { 1 } \neq 0 v1=0,那么,则意味着所用的三维坐标系的原点不在地球质量中心,坐标系的原点需要重新进行标定。卫星在大气层外飞行,所以根据其确定的地球质心位置,是包含整个大气、海洋在内的地心位置。

2.3二阶项

v 2 = G r ∫ M ( R r ) 2 ( 3 2 cos ⁡ 2 ψ − 1 2 ) d m v _ { 2 } = \frac { G } { r } \int _ { M } ( \frac { R } { r } ) ^ { 2 } ( \frac { 3 } { 2 } \cos ^ { 2 } \psi - \frac { 1 } { 2 } ) d m v2=rGM(rR)2(23cos2ψ21)dm
R 2 = x m 2 + y m 2 + z m 2 R ^ { 2 } = x _ { m } ^ { 2 } + y _ { m } ^ { 2 } + z _ { m } ^ { 2 } R2=xm2+ym2+zm2
cos ⁡ ψ = R ⋅ r R r = x x m + y y m + z z m R r \cos \psi = \frac { \bm R \cdot \bm r } { R r } = \frac { x x _ { m } + y y _ { m } + z z _ { m } } { R r } cosψ=RrRr=Rrxxm+yym+zzm
替换可得
v 2 = G r ∫ M ( R r ) 2 ( 3 2 ( x x m + y y m + z z m R r ) 2 − 1 2 ) d m v _ { 2 } = \frac { G } { r } \int _ { M } ( \frac { R } { r } ) ^ { 2 } ( \frac { 3 } { 2 } ( \frac { x x _ { m } + y y _ { m } + z z _ { m } } { R r } ) ^ { 2 } - \frac { 1 } { 2 } ) d m v2=rGM(rR)2(23(Rrxxm+yym+zzm)221)dm
v 2 = f 2 r 5 [ ( y 2 + z 2 − 2 x 2 ) A + ( x 2 + z 2 − 2 y 2 ) B + ( x 2 + y 2 − 2 z 2 ) C + 6 y z D + 6 x z E + 6 x y F ] v _ { 2 } = \frac { f } { 2 r ^ { 5 } } \left[ ( y ^ { 2 } + z ^ { 2 } - 2 x ^ { 2 } ) A + ( x ^ { 2 } + z ^ { 2 } - 2 y ^ { 2 } ) B +( x ^ { 2 } + y ^ { 2 } - 2 z ^ { 2 } ) C + 6 y z D + 6 x z E + 6 x y F \right] v2=2r5f[(y2+z22x2)A+(x2+z22y2)B+(x2+y22z2)C+6yzD+6xzE+6xyF]

其中相关的符号说明:质点M对坐标轴的转动惯量
A = ∫ M ( y m 2 + z m 2 ) d m B = ∫ M ( x m 2 + z m 2 ) d m C = ∫ M ( x m 2 + y m 2 ) d m A = \int _ { M } ( y _ { m } ^ { 2 } + z _ { m } ^ { 2 } ) d m \quad B= \int _ { M } ( x _ { m } ^ { 2 } + z _ { m } ^ { 2 } ) d m \quad C = \int _ { M } ( x _ { m } ^ { 2 } + y _ { m } ^ { 2 } ) d m A=M(ym2+zm2)dmB=M(xm2+zm2)dmC=M(xm2+ym2)dm
离心力矩
D = ∫ M ( y m z m ) d m E = ∫ M ( x m z m ) d m F = ∫ M ( x m y m ) d m D = \int _ { M } ( y _ { m } z _ { m } ) d m \quad E = \int_ { M } ( x _ { m } z _ { m } ) d m \quad F = \int_ { M } ( x _ { m } y _ { m } ) d m D=M(ymzm)dmE=M(xmzm)dmF=M(xmym)dm
化成球坐标系,S的极坐标系为
x = r . cos ⁡ φ cos ⁡ λ y = r . cos ⁡ φ sin ⁡ λ z = r . sin ⁡ φ \begin{matrix} x = r . \cos \varphi \cos \lambda \\ y = r . \cos \varphi \sin \lambda \\ z = r . \sin \varphi \end{matrix} x=r.cosφcosλy=r.cosφsinλz=r.sinφ
于是
v 2 = G r 3 [ 2 C − A − B 2 ( 1 2 − 3 2 sin ⁡ 2 φ ) + 3 ( E cos ⁡ λ + D sin ⁡ λ ) cos ⁡ φ sin ⁡ φ + 3 2 ( B − A 2 cos ⁡ 2 λ + F sin ⁡ 2 λ ) cos ⁡ 2 φ ] v_2= \frac { G } { r ^ { 3 } } \left[ \frac { 2 C - A - B } { 2 } ( \frac { 1 } { 2 } - \frac { 3 } { 2 } \sin ^ { 2 } \varphi ) + 3 ( E \cos \lambda + D \sin \lambda ) \cos \varphi \sin \varphi + \frac { 3 } { 2 } ( \frac { B - A } { 2 } \cos 2 \lambda + F \sin 2 \lambda ) \cos ^ { 2 } \varphi \right] v2=r3G[22CAB(2123sin2φ)+3(Ecosλ+Dsinλ)cosφsinφ+23(2BAcos2λ+Fsin2λ)cos2φ]
v 2 = G r 3 [ 2 C − A − B 2 ( 1 2 − 3 2 sin ⁡ 2 φ ) + 3 2 ( B − A 2 cos ⁡ 2 λ cos ⁡ 2 φ ) + 3 ( E cos ⁡ λ + D sin ⁡ λ ) cos ⁡ φ sin ⁡ φ + 3 2 F sin ⁡ 2 λ cos ⁡ 2 φ ] v_2= \frac { G } { r ^ { 3 } } \left[ \frac { 2 C - A - B } { 2 } ( \frac { 1 } { 2 } - \frac { 3 } { 2 } \sin ^ { 2 } \varphi ) + \frac { 3 } { 2 } ( \frac { B - A } { 2 } \cos 2 \lambda \cos ^ { 2 } \varphi ) + 3 ( E \cos \lambda + D \sin \lambda ) \cos \varphi \sin \varphi + \frac { 3 } { 2 } F \sin 2 \lambda \cos ^ { 2 } \varphi \right] v2=r3G[22CAB(2123sin2φ)+23(2BAcos2λcos2φ)+3(Ecosλ+Dsinλ)cosφsinφ+23Fsin2λcos2φ]
解释和应用: 引力位的二阶球谐系数与地球的扁率和极潮变化直接相关

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值