球谐函数的概念与应用:球谐函数

球谐函数的概念与应用:球谐函数简介

 

球谐函数性质

和傅里叶级数性质类似,球谐函数也是以正交函数作为基底,傅里叶级数的正交基底为sin(nx)和cos(nx)。球谐函数则是球面上的正交基底。其主要性质有:

  • 标准正交性
  • 旋转不变性
  • 函数乘积的积分等于其球谐系数向量的点积

标准正交性表示:

其中y_{i}y_{j}表示两组球谐函数基底。

 

旋转不变性表示:

g(t)=f(R(t))=R(f(t))

 

函数乘积的积分等于其球谐系数向量的点积:

\int f(t)g(t)dt=\sum_{i=0}^{n^{2} }F_{i}G_{i}.

 

我们列出球谐函数的表达式:

我们可以把它理解为加工版的傅里叶级数正交基底。其中K_{l}^{m}为:

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值