捷联惯导系统学习3.3(引力位函数)

在这里插入图片描述
参数说明:
M : 地 球 总 质 量 M:地球总质量 M:
d m : 地 球 上 的 质 量 微 元 dm:地球上的质量微元 dm:
m ′ : 地 球 外 部 空 间 上 的 一 个 质 点 m':地球外部空间上的一个质点 m:
p : m 与 d m 之 间 的 距 离 p:m与dm之间的距离 p:mdm
万有引力大小为:
f = G d m ∗ m ′ p 2 f=\frac{Gdm*m'}{p^2} f=p2Gdmm

引力位函数

若 外 有 引 力 做 工 ( 从 无 穷 远 移 动 到 半 径 p 处 ) 为 : A = ∫ ∞ p − G d m ∗ m p 2 = G d m ∗ m ′ p 若外有引力做工(从无穷远移动到半径p处)为:A=\int_\infty^p-\frac{Gdm*m}{p^2}=\frac{Gdm*m'}{p} (p):A=pp2Gdmm=pGdmm
根据能量守恒,引力做工必然等于 m ′ m' m减少的位能(势能),若单位质量的点(从无穷远移动到半径p处),势能必然减少,将减少量定义为位函数:
d V = G d m p dV=\frac{Gdm}{p} dV=pGdm

地球外部空间的调和函数

地球产生的各质量微元函数之和为:
V = ∫ M d V = G ∫ M d m p ( 公 式 1 ) V=\int_MdV=G\int_M\frac{dm}{p}(公式1) V=MdV=GMpdm1

又因为:
▽ V = ∂ 2 V ∂ x 2 + ∂ 2 V ∂ y 2 + ∂ 2 V ∂ z 2 = 0 ( 证 略 ) \bigtriangledown V=\frac{\partial^2V}{\partial x^2}+\frac{\partial^2V}{\partial y^2}+\frac{\partial^2V}{\partial z^2}=0(证略) V=x22V+y22V+z22V=0()
所以 V V V是在地球质量M的外部空间上是调和函数

勒让德多项式的生成函数

在这里插入图片描述

参数说明:
m ′ : 的 球 坐 标 为 ( r , θ , λ ) m':的球坐标为(r,\theta,\lambda) m(r,θ,λ)
d m : 的 球 坐 标 为 ( r , θ ′ , λ ′ ) dm:的球坐标为(r,\theta',\lambda') dm(r,θ,λ)
向 量 R 与 r 夹 角 为 φ 向量R与r夹角为\varphi Rrφ
m 0 ′ 是 m ′ 在 球 面 上 的 投 影 m0'是m'在球面上的投影 m0m
在, o , d m , m ′ o,dm,m' o,dm,m构成的三角形中,根据余弦定理,可以得到:
p 2 = r 2 + R 2 − 2 R r c o s φ = r 2 ( 1 − 2 a x + a 2 ) ( a = R r , x = c o s φ ) p^2=r^2+R^2-2Rrcos\varphi=r^2(1-2ax+a^2)(a=\frac{R}{r},x=cos\varphi) p2=r2+R22Rrcosφ=r2(12ax+a2)(a=rR,x=cosφ)
再开平方,取倒数得到:
1 p = 1 r ( 1 − 2 a x + a 2 ) − 1 2 ( 公 式 2 ) \frac{1}{p}=\frac{1}{r}(1-2ax+a^2)^{-\frac{1}{2}}(公式2) p1=r1(12ax+a2)212

又因为:
( 1 − 2 a x + a 2 ) − 1 2 = ∑ n = 0 ∞ P n ( x ) a n ( 勒 让 德 多 项 式 的 生 成 函 数 ) ( 公 式 3 ) (1-2ax+a^2)^{-\frac{1}{2}}=\sum_{n=0}^\infty P_n(x)a^n(勒让德多项式的生成函数)(公式3) (12ax+a2)21=n=0Pn(x)an()3

所以 ( 1 − 2 a x + a 2 ) − 1 2 (1-2ax+a^2)^{-\frac{1}{2}} (12ax+a2)21为勒让德多项式的生成函数

球函数的加法公式

在这里插入图片描述

根据球面的三角余弦定理有: c o s φ = c o s θ c o s θ ′ + s i n θ s i n θ ′ c o s ( λ − λ ′ ) cos\varphi=cos\theta cos\theta'+sin\theta sin\theta'cos(\lambda-\lambda') cosφ=cosθcosθ+sinθsinθcos(λλ)
带入 P n ( c o s φ ) = ∑ k = 0 n 2 ( n − k ) ! ( 1 + δ k ) ( n + k ) ! P n k ( c o s θ ) P n k ( c o s θ ′ ) c o s k λ ′ + P n k c o s θ s i n ( k λ ) P n k ( c o s θ ′ ) ( s i n k λ ′ ) ( 公 式 4 ) P_n(cos\varphi)=\sum_{k=0}^n\frac{2(n-k)!}{(1+\delta_k)(n+k)!}P_n^k(cos\theta)P_n^k(cos\theta')cosk\lambda'+P_n^kcos\theta sin(k\lambda) P_n^k(cos\theta')(sink\lambda') (公式4) Pn(cosφ)=k=0n(1+δk)(n+k)!2(nk)!Pnk(cosθ)Pnk(cosθ)coskλ+Pnkcosθsin(kλ)Pnk(cosθ)(sinkλ)(4)

利用德让勒多项式求解V(调和函数)

将勒让德多项式的生成函数(公式(3)),将带入公式(2),再将公式2带入地球外部空间的调和函数公式(1)。
得到:
R e : 旋 转 椭 圆 球 的 长 半 径 R_e:旋转椭圆球的长半径 Re:
u = G M : 地 球 引 力 常 数 u=GM:地球引力常数 u=GM:
δ k = { 1 k = 0 0 k ≠ 1 \delta_k= \begin{cases} 1&k=0\\ 0&k\neq1\\ \end{cases} δk={10k=0k=1
V = G r ∑ n = 0 ∞ ( R e r ) n ∫ M ( R R e ) n P n ( c o s φ ) d m V=\frac{G}{r}\sum_{n=0}^\infty(\frac{R_e}{r})^n\int_M(\frac{R}{R_e})^nP_n(cos\varphi)dm V=rGn=0(rRe)nM(ReR)nPn(cosφ)dm
将公式(4)带入:
得到:
V = u r ∑ n = 0 ∞ ( R e r ) n ∑ k = 0 n ( C n k c o s k λ + S n k s i n k λ ) P n k ( c o s θ ) V=\frac{u}{r}\sum_{n=0}^\infty(\frac{R_e}{r})^n\sum_{k=0}^n(C_n^kcosk\lambda+S_n^ksink\lambda)P_n^k(cos\theta) V=run=0(rRe)nk=0n(Cnkcoskλ+Snksinkλ)Pnk(cosθ)
C n k = 2 ( n − k ) ! M ( 1 + δ k ) ( n + k ) ! ∫ M ( R R e ) n P n k ( c o s θ ′ ) c o s k λ ′ d m C_n^k=\frac{2(n-k)!}{M(1+\delta_k)(n+k)!}\int_M(\frac{R}{R_e})^nP_n^k(cos\theta')cosk\lambda'dm Cnk=M(1+δk)(n+k)!2(nk)!M(ReR)nPnk(cosθ)coskλdm
S n k = 2 ( n − k ) ! M ( 1 + δ k ) ( n + k ) ! ∫ M ( R R e ) n P n k ( c o s θ ′ ) s i n k λ ′ d m S_n^k=\frac{2(n-k)!}{M(1+\delta_k)(n+k)!}\int_M(\frac{R}{R_e})^nP_n^k(cos\theta')sink\lambda'dm Snk=M(1+δk)(n+k)!2(nk)!M(ReR)nPnk(cosθ)sinkλdm
已知直角坐标系到球体坐标系的转换关系如下:
{ x = R s i n θ ′ c o s λ ′ y = R s i n θ ′ s i n λ ′ z = R c o s θ ′ \begin{cases} x=Rsin\theta'cos\lambda'\\ y=Rsin\theta'sin\lambda'\\ z=Rcos\theta'\\ \end{cases} x=Rsinθcosλy=Rsinθsinλz=Rcosθ
刚体的张量定义如下:刚体的惯性张量及其物理意义
I = [ I x − I x y − I x z − I x y I y − I y z − I x z − I y z I x z ] = ∫ M [ y 2 + z 2 − x y − x z − x y x 2 + z 2 − y z − x z − y z x 2 + y 2 ] d m I=\left[\begin{matrix} I_{x}&-I_{xy}&-I_{xz}\\ -I_{xy}&I_{y}&-I_{yz}\\ -I_{xz}&-I_{yz}&I_{xz}\\ \end{matrix}\right]=\int_M\left[\begin{matrix} y^2+z^2&-xy&-xz\\ -xy&x^2+z^2&-yz\\ -xz&-yz&x^2+y^2\\ \end{matrix}\right]dm I=IxIxyIxzIxyIyIyzIxzIyzIxz=My2+z2xyxzxyx2+z2yzxzyzx2+y2dm
可以得到:
C 0 0 = 1 C_0^0=1 C00=1
C 0 1 = 1 R e ( 1 M ∫ M z d m ) C_0^1=\frac{1}{R_e}(\frac{1}{M}\int_Mzdm) C01=Re1(M1Mzdm)
C 1 1 = 1 R e ( 1 M ∫ M x d m ) C_1^1=\frac{1}{R_e}(\frac{1}{M}\int_Mxdm) C11=Re1(M1Mxdm)
S 1 1 = 1 R e ( 1 M ∫ M y d m ) S_1^1=\frac{1}{R_e}(\frac{1}{M}\int_Mydm) S11=Re1(M1Mydm)
C 2 0 = 1 M R e 2 ( ∫ M z 2 − x 2 + y 2 2 d m ) = 1 M R e 2 ( I x + I y 2 − I z ) C_2^0=\frac{1}{MR_e^2}(\int_Mz^2-\frac{x^2+y^2}{2}dm)=\frac{1}{MR_e^2}(\frac{I_x+I_y}{2}-I_z) C20=MRe21(Mz22x2+y2dm)=MRe21(2Ix+IyIz)
C 2 1 = 1 M R e 2 ∫ M x z d m = I x z M R e 2 C_2^1=\frac{1}{MR_e^2}\int_Mxzdm=\frac{I_{xz}}{MR_e^2} C21=MRe21Mxzdm=MRe2Ixz
C 2 2 = 1 4 M R e 2 ( ∫ M x 2 − y 2 d m ) = I y − I x 4 M R e 2 C_2^2=\frac{1}{4MR_e^2}(\int_Mx^2-y^2dm)=\frac{I_{y}-I_{x}}{4MR_e^2} C22=4MRe21(Mx2y2dm)=4MRe2IyIx
S 2 1 = 1 M R e 2 ( ∫ M y z d m ) = I y z M R e 2 S_2^1=\frac{1}{MR_e^2}(\int_Myzdm)=\frac{I_{yz}}{MR_e^2} S21=MRe21(Myzdm)=MRe2Iyz
S 2 2 = 1 4 M R e 2 ( ∫ M x y d m ) = I x y 2 M R e 2 S_2^2=\frac{1}{4MR_e^2}(\int_Mxydm)=\frac{I_{xy}}{2MR_e^2} S22=4MRe21(Mxydm)=2MRe2Ixy
如果定义直角坐标与地球惯性惯性主轴重合,则: I x y = I y z = I x z = 0 I_{xy}=I_{yz}=I_{xz}=0 Ixy=Iyz=Ixz=0

对于实际应用时,地球坐标一边选择坐标原点与地球质心重合,oz与地球自转平行,ox轴在赤道面上且指向0度经线,这时坐标轴往往与惯性主轴不重合。
利用三角函数恒等式:
得到:
V = u r { 1 − ∑ n = 1 ∞ ( R e r ) n [ J n P n ( c o s θ ) + ∑ k = 1 n J n k P n k ( c o s θ ) c o s k ( λ + λ n k ) ] } V=\frac{u}{r}\{1-\sum_{n=1}^\infty(\frac{R_e}{r})^n[J_nP_n(cos\theta)+\sum_{k=1}^nJ_n^kP_n^k(cos\theta)cosk(\lambda+\lambda_n^k)]\} V=ru{1n=1(rRe)n[JnPn(cosθ)+k=1nJnkPnk(cosθ)cosk(λ+λnk)]}
J n = − C n 0 , J n k = ( C n k ) 2 + ( S n k ) 2 , λ n k = − a r c t a n ( S n k C n k ) / k J_n=-C_n^0,J_n^k=\sqrt{(C_n^k)^2+(S_n^k)^2},\lambda_n^k=-arctan(\frac{S_n^k}{C_n^k})/k Jn=Cn0,Jnk=(Cnk)2+(Snk)2 ,λnk=arctan(CnkSnk)/k
J 2 = C 2 0 = 1 M R e 2 ( I x + I y 2 − I z ) ( 动 力 扁 率 : 反 映 赤 道 与 极 轴 上 转 动 惯 量 的 差 别 ) J_2=C_2^0=\frac{1}{MR_e^2}(\frac{I_x+I_y}{2}-I_z)(动力扁率:反映赤道与极轴上转动惯量的差别) J2=C20=MRe21(2Ix+IyIz)()
u r : 球 形 地 球 引 起 的 引 力 位 \frac{u}{r}:球形地球引起的引力位 ru:
在实际应用中因为其他系数比 J 2 J_2 J2小三个数量级,所以只需考虑 u r 和 J 2 \frac{u}{r}和J_2 ruJ2的影响,可以将 V V V近似看为:
V = u r [ 1 − J 2 R e 2 2 r 2 ( 3 c o s 2 θ − 1 ) ] ( 只 考 虑 主 谐 项 ) V=\frac{u}{r}[1-\frac{J_2R_e^2}{2r^2}(3cos^2\theta-1)](只考虑主谐项) V=ru[12r2J2Re2(3cos2θ1)]

卫星在惯性坐标系下的运动方程(只考虑主谐项)

已知
位 移 矢 量 : r = [ x y z ] T 位移矢量:r=\left[\begin{matrix} x&y&z\\ \end{matrix}\right]^T r=[xyz]T
引 力 : f = [ f x f y f z ] T 引力:f=\left[\begin{matrix} f_x&f_y&f_z\\ \end{matrix}\right]^T f=[fxfyfz]T
c o s θ = z r cos\theta=\frac{z}{r} cosθ=rz
对x,y,z求2阶片导,求得加速度方程为:
r ¨ = − u r 3 [ I + 3 2 J 2 ( R e r ) 2 ( D − 5 ( u r ∗ u p ) I ) ] r \ddot r=-\frac{u}{r^3}[I+\frac{3}{2}J_2(\frac{R_e}{r})^2(D-5(u_r*u_p)I)]r r¨=r3u[I+23J2(rRe)2(D5(urup)I)]r
其中: D = d i a g ( 1 1 3 ) D=diag\left(\begin{matrix} 1&1&3\\ \end{matrix}\right) D=diag(113)
u r 表 示 r 上 的 单 位 矢 量 u_r表示r上的单位矢量 urr
u p 表 示 自 转 轴 上 的 的 单 位 矢 量 u_p表示自转轴上的的单位矢量 up
u r ∗ u p 表 示 u p 与 u r 之 间 夹 角 的 余 弦 值 u_r*u_p 表示u_p与u_r之间夹角的余弦值 urupupur

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值