掩码图片转json 坐标数组, mask 转 json

主要方法为:findContours
不懂的自行百度吧, 自行修改代码生成json文件
# encoding: utf-8
"""
@author: _Jack Sparrow
@time:  2022/7/28 16:35
@file: mask_as_json.py
@desc: 掩码图片转json
"""

import cv2
import pandas as pd
import os


def get_coor(img):
    gray = cv2.cvtColor
<think>好的,用户想要将COCO格式的JSON文件转换为彩色的Mask掩码图像。首先,我需要理解COCO数据集的格式。COCO的标注信息存储在JSON文件中,包含图像信息、类别和注释。每个注释都有segmentation多边形和category_id。转换的关键是将每个类别映射到不同的颜色,然后根据多边形生成掩码。 用户提到的参考博客[^1]和[^2]提供了部分代码,但用户遇到了问题,可能需要调整。比如,处理多个实例时的颜色分配,确保每个类别有唯一颜色。可能需要使用PIL或OpenCV来绘制多边形并填充颜色。 接下来,考虑步骤:读取JSON文件,遍历每个图像的所有注释,为每个类别生成对应的颜色掩码。注意,同一图像中的不同实例可能属于同一类别,是否需要区分实例?用户的问题中提到“彩色Mask”,可能希望每个类别有不同颜色,而不是每个实例。因此,可能需要按类别分配颜色,而不是实例。 另外,处理segmentation多边形时,需要正确解析COCO的坐标格式,可能是多边形点列表。使用OpenCV的fillPoly函数来绘制区域。颜色映射可以使用预定义的调色板,比如每个类别ID对应RGB值。 还需要考虑图像尺寸,确保掩码与原始图像尺寸一致。保存生成的掩码为PNG格式,可能使用PIL库。最后,测试代码,检查颜色是否正确,覆盖所有类别。 用户可能需要完整的代码示例,包括读取JSON、颜色映射、生成和保存掩码。注意异常处理,比如忽略无效的segmentation数据。此外,如果数据集中存在重叠区域,可能需要处理颜色覆盖的顺序,但通常最后绘制的会覆盖之前的部分,不过对于分类掩码,可能每个像素只属于一个类别,需要明确处理方式。</think>### COCO JSON彩色Mask图像实现方法 根据您提供的引用内容和需求,我们将分步骤实现转换过程: 1. **数据准备阶段** - 安装依赖库:`pip install pycocotools numpy opencv-python pillow` - 创建颜色映射表(每个类别分配唯一RGB值) $$ \text{palette} = \{0:(0,0,0), 1:(255,0,0), 2:(0,255,0),...\} $$ 2. **核心转换代码** ```python from pycocotools.coco import COCO import cv2 import numpy as np import os def coco2mask(json_path, img_dir, output_dir): coco = COCO(json_path) cat_ids = coco.getCatIds() img_ids = coco.getImgIds() # 创建颜色映射(示例使用HSV色轮分布) palette = {cat_id: tuple(map(int, np.array([i*180/len(cat_ids), 255, 255]))) for i, cat_id in enumerate(cat_ids)} palette = {k: tuple(cv2.cvtColor(np.uint8([[v]]), cv2.COLOR_HSV2BGR)[0,0]) for k, v in palette.items()} for img_id in img_ids: img_info = coco.loadImgs(img_id)[0] ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) # 创建空白掩膜 h, w = img_info['height'], img_info['width'] mask = np.zeros((h, w, 3), dtype=np.uint8) for ann in anns: # 提取多边形坐标(处理不同标注格式) seg = ann['segmentation'] if type(seg) == list: if type(seg[0]) == list: # 单个多边形 polygons = [np.array(seg, dtype=np.int32).reshape((-1,1,2))] else: # RLE格式需要转换 rle = coco.annToRLE(ann) mask_single = coco.annToMask(ann) color = palette[ann['category_id']] mask[mask_single == 1] = color continue else: # RLE格式 mask_single = coco.annToMask(ann) color = palette[ann['category_id']] mask[mask_single == 1] = color continue # 绘制多边形 cv2.fillPoly(mask, polygons, color=palette[ann['category_id']]) # 保存结果 cv2.imwrite(os.path.join(output_dir, img_info['file_name'].replace('.jpg','.png')), mask) ``` 3. **关键改进说明**(基于引用内容优化) - 支持多种标注格式解析(多边形/RLE) - 自动生成视觉区分度高的颜色映射 - 保留原始文件名对应关系 - 处理同一对象多个标注的情况
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Hunter__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值