基于K-Means聚类算法的主颜色提取

本文介绍了如何利用K-Means聚类算法从图像中提取主要颜色。首先,简述了K-Means算法的工作原理,然后详细阐述了如何在Python中实现这个过程,包括图像预处理、K-Means模型训练、颜色的十六进制转换和颜色名称查找。通过调用matplotlib和webcolors等库,最终能够展示图像的主要颜色分布和详细信息。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

01.简介

本期我们将一起实现基于K-Means聚类算法的主色提取。在深入研究代码之前,让我们先了解一下K-Means算法的背景知识。

02.K均值类聚算法

K-Means算法是最流行但最简单的无监督算法。对于散布在n维空间中的所有数据点,它会将具有某些相似性的数据点归为一个群集。在随机初始化k个聚类质心之后,该算法迭代执行两个步骤:

1. 聚类分配:根据每个数据点距聚类质心的距离,为其分配一个聚类。

2. 移动质心:计算聚类所有点的平均值,并将聚类质心重定位到平均位置。

根据新的质心位置,将数据点重新分配给群集。

K-Means算法的迭代步骤

经过一定数量的迭代后,我们观察到聚类质心不会进一步移动或移动到任何新位置,聚类中的数据点也不会更改。至此,算法已经收敛。

我们将整个程序分为多个功能,首先导入该程序所需的模块

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.colors as color


import numpy as np
from collections import Counter
import pandas as pd
import math


from sklearn.cluster import KMeans
from PIL import Image
import webcolors
import json


import argparse

在启动主函数之前,我们将创建一个ArgumentParser()对象以接受命令行参数,并创建相应的变量以接受命令行参数的值。与此同时保留了两个“可选”命令行参数,即clusters和imagepath。

parser = argparse.ArgumentParser()


parser.add_argument("--clusters", help="No. of clusters")
parser.add_argument("--imagepath", help="Path to input image")


args = parser.parse_args()


IMG_PATH = args.imagepath if args.imagepath else "images/poster.jpg"
CLUSTERS = args.clusters if args.clusters else 5


WIDTH = 128
HEIGHT = 128

在clusters参数中,当imagepath用于传递带有图像名称的图像路径时,您需要提及要从图像中提取的颜色数量。默认情况下,程序将从图像中提取5种颜色,然后从文件夹图像中选择一个名为poster.jpg的图像。小伙伴们可以根据需要设置默认值。我们还将为图像调整大小定义宽度和高度

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值