基于OpenCV的直方图匹配

本文介绍了图像直方图的概念,展示了如何在Python中使用OpenCV生成和均衡化直方图,以及如何进行直方图匹配以调整图像的对比度。直方图均衡化可以增强图像的对比度,而直方图匹配则允许根据目标图像的对比度调整源图像。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

如何为图像生成直方图,如何使直方图相等,最后如何将图像直方图修改为与其他直方图相似。

01. 什么是图像直方图?

在开始定义直方图之前,为简单起见我们先使用灰度图像,稍后再解释彩色图像的处理过程。

图像直方图表示图像的像素分布情况。换言之,图像直方图显示具有特定像素值的图像点数量。例如,假设正常图像的像素强度在0到255之间变化。为了生成其直方图,我们只需要计算像素值为0的像素数量,然后计算1并继续到255即可。在图1中,我们有一个5 * 5的样本图像,我们通过计算每个像素强度的数量来创建直方图表。

图1:生成图像直方图的过程

02. 如何生成图像直方图?

在python中,我们可以使用以下两个函数来创建然后显示图像的直方图。

import matplotlib.pyplot as plt
import numpy as np


def generate_histogram(img, do_print):
    """
    @params: img: can be a grayscale or color image. We calculate the Normalized histogram of this image.
    @params: do_print: if or not print the result histogram
    @return: will return both histogram and the grayscale image 
    """
    if len(img.shape) == 3: # img is colorful, so we convert it to grayscale
        gr_img = np.mean(img, axis=-1)
    else:
        gr_img = img
    '''now we calc grayscale histogram'''
    gr_hist = np.zeros([256])


    for x_pixel in range(gr_img.shape[0]):
        for y_pixel in range(gr_img.shape[1]):
            pixel_value = int(gr_img[x_pixel, y_pixel])
            gr_hist
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值