年薪百万是什么感觉?

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自|深度学习与计算机视觉
听两位坐标上海的哥们怎么说:哥们一:坐标上海,说起来显得有点装,但却是实情,年薪百万不如狗。且听我一一道来。先明确一个概念,年薪百万一般是税前百万,到手大概 70 多万,为了方便算,就按照每月到手 6 万来算,年 72 万。在上海生活,在两年前房价最高的时候父母帮忙出的首付买了房,贷款每月 2.5 万,贷款可不给算税前税后,直接工资剩下 3w5。开车上班,陆家嘴停车费 80 一天,偶尔出差不停,月 1500,家里停车费 500 一个月(没买车位),油费大概 1200,保养、修车、保险、违章,一个月姑且算 1200,每月成本 4400,电话费水费电费 600 总是要的,剩下 3w。说实话,后悔买房,买在了最高点,离上班的地方也远,衍生了交通成本,还要还房贷,无数次问自己,在陆家嘴租个房子,走路或者自行车上班不好么,租个小房子总比房贷低,剩下的钱理财现在也有很多收益,还省下了交通成本,可是世界上没有后悔药。再说其他成本,陆家嘴一餐饭基本 40-60 算比较普通,40 估计难得吃饱,早餐一般全家便利店,咖啡+其他 12 块,晚餐很难自己做,晚餐家里附近35差不多,全天吃饭 100 差不多(不考虑聚会的情况下),姑且按照 2500 来算,每个月跟朋友聚会是少不了的,有来有往的请客,算上吃饭烧开 ktv,加上家里出去改善伙食,4500 主要的,这就是 7000 的成本,剩下 2.3w。接下来说置装费,这个钱不好省,西装 1-2 个月要买一套新的,衬衫一年 3-5 件,运动装休闲衣,冬季羽绒服要买一件新的,运动鞋一年一双,目测置装费一年 2 万至少。老婆和孩子买了友邦保险,年缴费,老婆 1.5w,儿子 1w,我没舍得买,老人们买的组合消费保险,平安的,三个人 3000,6 个人 6000,保险支出 3.1w,算上置装费 5.1w,算是月平均 4000,还剩下 1.9w。旅游,说起来已经三年没出国了,太贵,还不好请假,一年境内有几次,也都是周边游,一次大概 4000 左右费用,一年平均 1.2w,一个月 1000,还有一块费用,我老婆南方人我是北方人,我们住在上海,两方父母来回上海,加上孩子来回,过年一起来回的机票全年要 1.5 万,就算平均一个月 1000,还剩下 1.7w。人情来往随份子,不说了,有来有往,不需要说。(全程我没算我老婆的花销,算她自我覆盖吧,女生花销还是很大的,衣服化妆品等等,你们懂)儿子还没上幼儿园,马上要考虑,幼儿园分三种,公立 500/月,假国际 10000/月,真国际 30w-50w/年,现在是真国际上不起,假国际不想上,为什么叫假国际,学校里有外教,但没一个是英语国家出生,都是后天学的,有口音,我一个留学生,找这种外教我觉得受到了侮辱,但由于身边人的压力,都觉得你是高薪要读好学校,你连孩子的教育都要糊弄,怎么可以?很纠结,不知道如何选择,我也想读真国际,孩子不是外籍是第一,这个钱真的读不起,假国际就是骗钱。孩子大了大家知道,上海这个地方,补课,体育,艺术一年的花费,就不说了,我剩下的钱是 cover 不住的,没结婚的时候出去吃喝从不看钱,现在我点外卖一定要看哪家配送费低,跟你说我年薪百万你信?最愁的是过年回家,爸妈还是很以你为骄傲的,平时亲戚朋友也都知道我在上海混的“不错”,亲戚来往,看望长辈,都要比别人出手大方,但我家人也很给力,从小给我很大支持,比如叔叔伯伯,姨妈舅舅,我也心甘情愿,过个年 2 万的开销也还是要的, 一年大概可以剩下 15w-18w。而且我过的也不是大富大贵的日子。大家想想,这些钱我没考虑老婆的花销,没考虑孩子的花销(其实爸妈在承担,因为在老家),父母不需要我给钱,但凡哪一个开始需要我花钱,我都有可能兜不住,说真的,老家的朋友总叫我 X 总,X 老板,开玩笑的叫我沪上精英,其实各种心酸只有自己知道,每天加班,不敢停下,我的钱也不是确定就有这么多,行情不好的时候随时可能打折,最怕的就是房贷断供,有时候真的不知道为了什么,在上海无时不刻不体会自己的渺小,同龄人的压力。只是无论如何,还是要保持生活的希望,不是么?哥们二:坐标上海,12年毕业,19年税前百万。怎么说呢,如人饮水,冷暖自知。可能很多人觉得百万年薪了还抱怨真的是又装逼又不知足,但个中滋味和艰苦真的只有自己才懂。首先上海年薪百万基本可以分为四类:1:无房贷,税后百万 - 这种真的就是神仙日子了,谈笑有鸿儒,往来无白丁,就是一个爽2:无房贷,税前百万 - 其实税前和税后百万是一个很大的门槛,税前百万在上海多数还是高级打工者,保不定啥时候就失业被裁都是又可能的,好在没有房贷,总体而言还是比较爽的。3:有房贷,税后百万 - 按照目前上海普遍一套房 1000 万,算贷款 600 万,每个月房贷 3 万吧,一年房贷去掉 36 万,剩下的普遍也能过上好日子,这个时候得看配偶是全职太太还是有工作得了,如果有小孩配偶还是全职太太得话,过的也只能说是小康生活。4:有房贷,税前百万 - 这个说得就是我了。。。虽然我是上海人,但因为父母本身是郊区人,又从小到大没轮到过拆迁,所以市区一套房子也没。生活是真的累,非常累。就我个人来说吧,19 年将将好税前 100 万,到手 68 万。高么?和全中国人民比较算是不错的了,但是活的也是算比较节约的。首先 16 年在房价最高峰时候当了接盘侠,买了套 700 多万得房子(上海 700 万得房子大家可以链家去查查,是真的算中等),每个月去掉公积金还要还 2 万,一年 25 万就没了。17年脑子秀逗报了个交大MBA,学费33万,现在每个月要还6000的学费贷款,一年7万又没了。家里一辆途观(是真的想买 X3,但算了下收入支出,也只能就想想了。22 万买的,旧车卖了 10 万,剩下 12 万贷款了 2 年,一年 6 万又没了,加上每个月 1000 停车费,1000 油费,车险啥的,总共算 1 年 9 万吧。平时家里水电煤物业费一个月 1500,买点零食牛奶水果一个月 1000,偶尔家里出去吃个饭,同学聚个餐,就算一个月各一次,一次 1000 吧,一年又是 5 万没了。然后买买衣服裤子鞋子这种,我一般夏天的都是淘宝买,单件不会超过 100 块,鞋子全套李宁,野都 200,300 块,就冬天外套稍微好点 1,2 千块。然后算 2 年买一套西装,衬衫皮鞋啥的。再办张健身卡 5000,全部总共一年就算 2 万吧。再就是家里面的吞金巨兽,小孩现在 3 岁,下个月开始都幼儿园。小区对口的公办是区二级园,个么只好去民办,给她报了个 3500 一个月的民办幼儿园(上海民办幼儿园普遍 6-7000 一个月,如果是国际学校要 30W 到底),真的是口袋撑不住,找了个民办里面算很便宜很便宜的,再加上幼儿园的伙食费,逢年过节给老师买点礼物,一年 5 万又没了。然后家里人还催着给小孩报点运动课,钢琴课,英语这种鸡血课,又是一年 3 万没了,妈的这种小孩子的教育就是伪中产的智商收割机。再就是旅游,我们家平均一年 1-2 次,但因为每次都是 4 位父母加我和老婆女儿,机票要 6 张,酒店要 3 间,就算一年去国外一年国内,平均下来机票 1W5,酒店加随便玩玩 1W5,一年又是 3万。出国也只舍得去日本和东南亚的,别的地方撑不住。最后就是我个人的零散支出,我不抽烟不喝酒不吸毒,平时就喜欢去现场看看中超 CBA,打打游戏(我现在打英雄联盟的电脑还是 17 年双十一的时候花了 3000 多淘宝买的山寨机),按按摩(非常非常正规的那种),做个针灸(上海针灸是真特么的贵,但我腰不好,每个月至少要去做个 1,2次)这些个人爱好就算一年 1 万吧。同志们看完可以算一下,68-25-7-9-5-2-8-3-1=8 万!这就是我一年最后剩下的钱,这个 8 万要覆盖点我一切的人情支出,逢年过节给长辈小辈的支出,真的所剩无几。好在车贷还 1 年就还完了,不过小孩长大了又要开始吞金了。所以其实到最后真的还是过的非常节约,我手机从来没有买过 IPHONE 的最新款,出去拜访客户拎得至今还是 15 年淘宝买的 300 块高仿普拉达。。。想买台好点的打游戏的电脑,纠结了 2 年了还是没舍得买,平时喝杯喜茶也都是要给自己找一大堆借口才舍得。尤其到了 2020 年,疫情缘故收入直接砍了一半多,好在我老婆一年也有个 20 万,加上吃吃老本才混过去,要是继续这样下去得话,基本就是各种消费降级,还完各种贷款和小孩支出基本就是赤字了。在上海,真的有没有房贷能给你得生活带来质得不同,真特么得应该租房!!!

— — 完 — —

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

### VGG网络在显著目标检测中的应用 #### 显著目标检测概述 显著性目标检测旨在识别图像中最吸引人的部分,这些区域通常对应于人类视觉系统的关注焦点。一个好的显著性目标检测模型应当具备良好的检测能力、高分辨率以及高效的计算性能[^3]。 #### VGG网络简介 VGG网络是一种经典的卷积神经网络架构,以其深层结构和均匀的小型卷积核(3×3)而闻名。这种设计使得VGG能够在保持较低参数量的同时获得较大的感受野,从而有效地捕捉图像的空间信息。对于显著性目标检测任务而言,VGG可以作为一种强大的特征提取器来获取多尺度的上下文信息[^1]。 #### 实现基于VGG的显著目标检测方法 ##### 特征提取 利用预训练过的VGG16或VGG19作为骨干网络,去除最后几层全连接层,仅保留卷积层用于构建编码器部分。通过这种方式可以从输入图片中抽取多个层次上的抽象表示: ```python import torch.nn as nn from torchvision import models class VGGSaliencyModel(nn.Module): def __init__(self, pretrained=True): super(VGGSaliencyModel, self).__init__() vgg = models.vgg16(pretrained=pretrained).features # 取出vgg的部分层作为encoder self.encoder = nn.Sequential( *list(vgg.children())[:-1] # 移除pooling layer后的最后一层conv ) def forward(self, x): features = [] for name, module in self.encoder._modules.items(): x = module(x) if 'relu' not in name and int(name) % 2 == 0: features.append(x.clone()) return features[-5:] # 返回倒数五层feature maps供后续处理 ``` ##### 解码与融合 针对上述得到的不同级别特征图,采用类似于U-Net的设计理念,在解码过程中逐步恢复空间维度,并引入跳跃连接以增强局部细节的表现力。特别地,考虑到语义信息的重要性及其对定位精度的影响,可以在高层次特征上施加注意力机制,以便更好地聚焦于感兴趣的目标对象[^2]。 ```python def upsample_block(in_channels, out_channels): return nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) class DecoderBlock(nn.Module): def __init__(self, channels_in, channels_out): super().__init__() self.block = nn.Sequential( upsample_block(channels_in, channels_out*2), nn.BatchNorm2d(channels_out*2), nn.ReLU(inplace=True), upsample_block(channels_out*2, channels_out), nn.BatchNorm2d(channels_out), nn.ReLU(inplace=True)) def forward(self,x): return self.block(x) # 注意力模块 (SE Block) class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) class SaliencyDecoder(nn.Module): def __init__(self, encoder_features_dim=[512]*5): super(SaliencyDecoder, self).__init__() decoders = [] attentions = [] last_channel_num = None for i, dim in enumerate(encoder_features_dim[::-1]): current_decoder_input = dim + ((last_channel_num or 0)*i)//2 decoder_layer = DecoderBlock(current_decoder_input, max(dim//2**(min(i,3)), 64)) attention_module = SELayer(max(dim//2**(min(i,3)), 64)) decoders.append(decoder_layer) attentions.append(attention_module) last_channel_num = max(dim//2**(min(i,3)), 64) self.decoders = nn.ModuleList(decoders) self.attentions = nn.ModuleList(attentions) final_conv = nn.Conv2d(last_channel_num, 1, kernel_size=1) self.final_conv = final_conv def forward(self, feature_maps): reversed_feature_maps = list(reversed(feature_maps)) decoded_output = None for idx, fm in enumerate(reversed_feature_maps): if decoded_output is not None: concat_fm = torch.cat([decoded_output,fm],dim=1) else: concat_fm = fm decoded_output = self.decoders[idx](concat_fm) attended_output = self.attentions[idx](decoded_output) saliency_map = self.final_conv(attended_output) return F.sigmoid(saliency_map) ``` 最终完整的显著性预测可以通过组合编码器和解码器两大部分完成: ```python model = nn.Sequential( VGGSaliencyModel(), SaliencyDecoder() ) ``` #### 数据准备与训练流程 为了适应特定应用场景下的需求,可能还需要调整数据集的选择及相应的预处理方式。例如,在某些情况下,可能会使用带有涂鸦标注的数据集来进行监督学习,这要求开发者根据实际情况定制化地划分样本集合并定义损失函数[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值