题目:Convolutional Cross-View Pose Estimation
卷积交叉视角姿态估计
作者:Zimin Xia; Olaf Booij; Julian F. P. Kooij
源码链接: https://github.com/tudelft-iv/CCVPE
摘要
我们提出了一种新颖的端到端跨视角姿态估计方法。给定一个地面级查询图像和一个覆盖查询局部邻域的航拍图像,通过将查询图像描述符与航拍图像中局部区域的描述符进行匹配,估计查询图像的3自由度相机姿态。方向感知描述符是通过使用平移等变卷积地面图像编码器和对比学习获得的。定位解码器以粗到细的方式生成密集概率分布,采用了新颖的LocalizationMatchingUpsampling模块。一个更小的方向解码器生成向量场,以根据定位条件定向估计。我们的方法在VIGOR和KITTI数据集上进行了验证,其中在可比的方向估计精度下,中值定位误差分别超过了最先进基线的72%和36%。预测的概率分布可以表示定位的不确定性,并能够拒绝可能的错误预测。无需重新训练,模型可以在具有不同视场的地面图像上进行推断,并在有可用方向先验的情况下使用它们。在Oxford RobotCar